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Abstract 

As the size of brain imaging data such as fMRI grows explosively, it provides us with unprecedented and 

abundant information about the brain. How to reduce the size of fMRI data but not lose much information 

becomes a more and more pressing issue. Recent literature studies tried to deal with it by dictionary learning and 

sparse representation methods, however, their computation complexities are still high, which hampers the wider 

application of sparse representation method to large scale fMRI datasets. To effectively address this problem, this 

work proposes to represent resting state fMRI (rs-fMRI) signals of a whole brain via a statistical sampling based 

sparse representation. First we sampled the whole brain’s signals via different sampling methods, then the 

sampled signals were aggregate into an input data matrix to learn a dictionary, finally this dictionary was used to 

sparsely represent the whole brain’s signals and identify the resting state networks. Comparative experiments 

demonstrate that the proposed signal sampling framework can speed-up by ten times in reconstructing concurrent 

brain networks without losing much information. The experiments on the 1000 Functional Connectomes Project 

further demonstrate its effectiveness and superiority. 
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Introduction 

With the advancement of neuroimaging technologies, the spatial and temporal resolution of brain imaging data 

such as fMRI has become higher and higher. For instance, the ongoing Human Connectome Project (HCP) (Van 

Essen et al. 2013) released its resting state fMRI (rs-fMRI) data with around 200,000 signals of 1200 time points. 

This fMRI big-data imposes significant challenges on the extraction and representation of neuroscientific 

meaningful information for human brain mapping. In response to this need, recently, sparse representation (Mairal 

et al. 2010; Wright et al. 2010) has been explored to represent whole-brain fMRI data and to reconstruct 

concurrent network activities (Oikonomou et al. 2012; Li et al. 2009; Eavani et al. 2012; Abolghasemi et al. 2013; 

Lv et al. 2014a; Li et al. 2012; Lee et al. 2011; Lv et al. 2014b). For example, Abolghasemi et al. 2013 adopted a 

fast incoherent K-SVD method for the detection of activated regions, and Eavani et al. utilized sparse 

representation method to identify highly modular, overlapping task-positive/negative pairs of functional 

sub-networks (Eavani et al. 2012). In particular, the recently developed holistic atlases of functional networks and 

interactions (HAFNI) system (Lv et al. 2014b) identified a number of reproducible and robust functional networks 

by sparse representation of whole-brain fMRI signals. The basic idea of HAFNI is that all fMRI signals within the 

whole brain of one subject were factorized into an over-complete basis signal dictionary and a reference 

coefficient matrix via dictionary learning and sparse coding algorithms (Mairal et al. 2010). Each dictionary atom 

represents the BOLD signal pattern of the functional activities of a specific brain network and its corresponding 

reference coefficient vector stands for the spatial distribution of this brain network (Lv et al. 2014a; Lv et al. 

2014b). 

 

However, these prior sparse representation methods still cost significant amount of time and memory space to 

learn a dictionary for one brain’s single fMRI scan because the input is a huge 4-D matrix with a number of over 

10
6
 voxels (several Giga bytes for the HCP fMRI images). The computing time cost thus would significantly 

hamper the wider application of sparse representation method to larger scale fMRI datasets. For instance, learning 

a dictionary for whole brain’s signals needs about 3,211 seconds, and loading a big fMRI data into memory needs 



more than 2 Giga Byte of space and about 900 seconds for merely one HCP rs-fMRI data on a usual laptop with 

Intel i5 3230 CPU. Therefore, this significant burden motivates us to investigate efficient data reduction methods, 

that is, signal sampling methods in this paper, to extract the representative signals without losing much 

information but can significantly speed-up. Our rationale is that the sampled fMRI signals can statistically and 

computationally well represent the original whole-brain fMRI data for concurrent brain network reconstruction 

based on prior successful applications of sampling methods in the statistical science fields (Meng et al. 2014; 

Mahoney 2011; Rao 2000) .  

 

Specifically, in this paper, we examined three rs-fMRI signal sampling methods, one is anatomical 

landmark-guided sampling by using the dense individualized and common connectivity-based cortical landmarks 

(DICCCOL) system (Zhu et al. 2013), and the other two are statistical random sampling and no sampling (using 

all of the whole brain’s signals) which are used for comparisons, respectively. The DICCCOL system consists of 

358 consistent cortical landmarks, each of which has DTI-derived fiber connection pattern consistency across 

different subjects (Zhu et al. 2013). The DICCCOL system provide us the structural and functional correspondent 

cortical locations across different brains (Zhu et al. 2013), thus benefitting us to sample meaningful and 

functionally corresponding rs-fMRI signals across different subjects in this paper. This is also the technical 

contribution and novelty of this paper to adopt anatomical landmark to guide rs-fMRI signal sampling. The 

random sampling chooses each voxel randomly and entirely by chance (Yates et al. 2002; Tillé 2011). Since each 

voxel has the same probability of being chosen, it can be regarded as a comparable sampling method. Then the 

sampled signals are employed as an input to learn a dictionary (which is used to sparsely represent all signals) and 

corresponding sparse coefficient matrix (which gives the sparse weights for the combination of dictionary atom) 

by the online dictionary learning and sparse coding method (Mairal et al. 2010). Experimental results on 

reconstructing concurrent functional brain networks from the HCP rs-fMRI data show that DICCCOL-guided 

sampling is substantially better than statistical random sampling. In general, sampling 2% out of the 

140,000-200,000 whole-brain signals is sufficient to learn an accurate dictionary for sparse representation and 10 

times speed-up can be achieved in comparison with that using all of the whole brain’s signals.        

https://en.wikipedia.org/wiki/Randomization
https://en.wikipedia.org/wiki/Probability


 

Materials and Methods 

Overview 

 

Figure 1. The overview of our computational framework. The sampling step represents DICCCOL-based 

sampling, statistical random sampling, or no sampling. The brain locations of DICCCOL-based sampling are 

shown in the bottom left corner as an example. 

 

Our framework of signal sampling for sparse representation of rs-fMRI data is summarized in Fig.1. First, we 

sampled the rs-fMRI signal of the whole brain via the above three different sampling methods (DICCCOL-based 

sampling, random sampling, and no sampling). The bottom left of Fig.1 shows the DICCCOL-based sampling 

locations of a brain as an example. Second, the sampled signals were used as an input matrix to learn an 

over-complete temporal dictionary via dictionary learning (Mairal et al. 2010). Third, the whole brain’s signals 



can be sparsely represented as a product of this dictionary and a sparse coefficient matrix by the sparse coding 

step (Mairal et al. 2010). Each row of the sparse coefficient matrix can be projected back to volumetric fMRI 

image space, resulting in the spatial maps of resting state networks (RSNs) of the brain (Fig. 1) for the 

interpretation of their spatial distributions. We described the dictionary learning and sparse coding theory in 

Section ‘dictionary learning and sparse representation’ and explained it in detail about the rationale of the 

proposed framework in section ‘DICCCOL-based sampling for sparse representation’ and Fig.2. We compared 

and evaluated the temporal dictionary atoms and their spatial maps generated by the DICCCOL-guided sampling, 

random sampling, and no sampling, respectively, in the section of results.  

 

Data acquisition and Preprocessing 

The public HCP Q1 rs-fMRI dataset was used to explore and validate the proposed method. The acquisition 

parameters of rs-fMRI data were as follows: 2×2×2 mm spatial resolution, 0.72 s temporal resolution and 1200 

time points. The L-R phase encoding rs-fMRI data of run 1 in HCP data was used in this paper. The preprocessing 

pipelines for rs-fMRI data included motion correction, spatial smoothing, temporal pre-whitening, slice time 

correction, global drift removal. The details of the HCP rs-fMRI dataset and preprocessing are referred to (Smith 

et al. 2013). 

 

The HCP Q1 DTI data of the same subjects was also used for DICCCOL landmark system generation. The 

acquisition parameters of DTI data was acquired with the dimensionality of 144*168*110, space resolution 

1.25mm*1.25mm*1.25mm, TR 5520ms and TE 89.5ms, with 90 DWI gradient directions and 6 B0 volumes 

acquired. Preprocessing of the DTI data included brain skull removal, motion correction, eddy current correction, 

tissue segmentation (Liu et al. 2007) and surface reconstruction (Liu et al. 2008). More details of the DTI dataset 

are referred to (Sotiropoulos et al. 2013). After the pre-processing, fiber tracking was performed using the 

MEDINRIA (FA threshold: 0.2; minimum fiber length: 20). Then, the DICCCOL landmarks were predicted based 

on the preprocessed DTI data according to the steps in our prior work (Zhu et al. 2013). 

 



After preprocessing, rs-fMRI images were registered to its corresponding DTI space considering that since both 

DTI and rs-fMRI images use EPI (echo planar imaging) sequences, their geometric distortions tend to be similar, 

and their misalignment is much less (Li et al. 2010). Then the rs-fMRI signals are extracted based on any of the 

three sampling methods, and each signal was normalized to be with zero mean and standard deviation of 1 (Lv et 

al. 2014a).  

 

Dictionary Learning and Sparse Representation 

To decompose the fMRI signals and to identify the resting state networks (RSN) of human brain, we adopt a 

dictionary learning and sparse coding method (Abolghasemi et al. 2013; Lv et al. 2014a; Mairal et al. 2010) from 

the machine learning and pattern recognition fields. Briefly, it can be considered as a matrix factorization problem, 

given the sampled (based on any of the three sampling results) rs-fMRI signal matrix Sϵℝt×n. Here, each column 

represents an rs-fMRI signal time series and S can be factorized as S=D×A, where Dϵℝt×m   is the dictionary, 

and A ϵℝm×n is called sparse coefficient matrix, as shown in Fig. 2(a). Each column in D is an atom of a learned 

basis dictionary D, and each rs-fMRI time series Si can be represented as a linear combination of atoms of 

dictionary, that is,  Si = D × Ai, where Ai is a coefficient column in A which gives the sparse weights for the 

combination. Meanwhile, each row of the A matrix represents the spatial volumetric distributions that have 

references to certain dictionary atoms. In this work, the factorization problem was resolved by the publicly 

available effective online dictionary learning and sparse coding method (Mairal et al. 2010), which aims to learn a 

meaningful and over-complete dictionary of functional bases Dϵℝt×m (m>t, m<<n) for the sparse representation 

of S, and then to learn an optimized A matrix for spare representation of rs-fMRI time signal using the obtained 

dictionary matrix D. 

 

To resolve this matrix factorization problem, Mairal et al. (Mairal et al. 2010) converted it to an empirical cost 

minimization function described in Equation (1) : 



𝐟𝐧(𝐃) ≜
𝟏

𝐧
∑ 𝓵(𝐒𝐢, 𝐃) 

𝐧

𝐢=𝟏

                                (1)     

That means we should make the cost minimum meanwhile try to sparsely represent Si using D, thus leading to 

the following Equation (2): 

ℓ(Si, D) ≜ min
Aiϵℝm

1

2
||Si − DAi||2

2 + λ||Ai||1                        (2) 

Here, ℓ1 regularization yields a sparse resolution of  Ai, and λ is a regularization parameter to trade-off the 

regression residual and sparsity level. Meanwhile, the dictionary atoms subject to the following constraints in 

Equation (3) since we mainly focus on the fluctuation shapes of basis fMRI activities and thus prevent D from 

arbitrarily large values: 

C ≜ {Dϵℝt×m   s. t.   ⩝ j = 1, … m, dj
Tdj ≤ 1}                     (3)       

More details for computing D are referred to (Mairal et al. 2010). Finally, when D is obtained, A is calculated as 

an l1-regularized linear least-squares problem (Mairal et al., 2010). In this way, the sampled rs-fMRI signals based 

on any of the three sampling methods are sparsely represented. 

 

Different from other signal decomposition methods such as Independent Component Analysis (ICA) (McKeown 

et al., 1998), the superiority of sparse coding method is that it does not explicitly assume the independence of 

rs-fMRI signals among different components (Daubechies et al., 2009). The sparse coding method has been 

demonstrated to be effective and efficient in reconstructing concurrent spatially-overlapping functional networks 

(Lv et al. 2014a; Lv et al. 2014b). This finding is consistent with the current neuroscience knowledge that a 

variety of cortical regions and networks exhibit strong functional diversity and heterogeneity (Corbetta et al. 2008; 

Pessoa 2012), and that a cortical region could participate in multiple functional domains/processes and a 

functional network might recruit various heterogeneous neuroanatomic areas. Furthermore, the sparse 

representation framework can effectively achieve both compact high-fidelity representation of the whole-brain 

fMRI signals and effective extraction of meaningful patterns (Lv et al. 2014a; Lv et al. 2014b). Its data-driven 

strategy naturally accounts for that brain regions might be involved in multiple concurrent functional processes 



(corresponding to multiple dictionary atoms) (Corbetta et al. 2008; Gazzaniga 2004; Pessoa 2012; Duncan 2010) 

and thus their fMRI signals are composed of various intrinsic atoms (Varoquaux et al. 2011). Particularly its 

reference coefficient matrix naturally reveals the spatial interaction patterns among inferred brain networks (Lv et 

al. 2014a; Lv et al. 2014b).  

 

 

(a)  

 

(b) 

 

Figure 2. (a) The illustration of dictionary learning and sparse representation. (b) Improved framework of 

dictionary learning and sparse representation with sampling. (c) One of DICCCOL landmarks (red planar triangles) 

and the corresponding fiber connections (white curves) from eight individuals. 

 



Improved Framework of Dictionary Learning and Sparse Representation with Sampling  

Based on the basic principle illustrated in Fig. 2(a), first, we sampled the whole brain’s signals via these three 

sampling methods, including DICCCOL-based sampling, random sampling and no sampling, respectively. Then, 

we aggregated the sampled signals into a signal matrix S′. In the second step, we employed the online dictionary 

learning and sparse coding method (Mairal et al. 2010) to learn the dictionary D′ and the corresponding 

coefficient matrix A′, that is S = D′ × A′. Finally, to obtain the sparse representation of whole brain signals, we 

performed the sparse coding method again on the whole brain signals matrix S using the learned D′ in this step, 

that is S = D′ × A, as shown in Fig.2(b). Since learning D and A are two separate processes in the online 

dictionary learning and sparse coding algorithm (Mairal et al. 2010), we can combine the last two steps as 

one-time dictionary learning (obtaining D′) and one-time sparse coding (obtaining A), as shown in Fig.2(b). In 

this way it does not induce additional computation in the algorithm. 

 

The DICCCOL system (Zhu et al. 2013) provides a set of consistent cortical landmarks which have structural and 

functional correspondence across different subjects. These landmarks contain the key structural information of 

cortical regions and are naturally suitable for signal sampling. We first predicted the DICCCOL landmarks for the 

new dataset according to the measure of consistent fiber connection pattern (called trace-map, described in Zhu et 

al. 2013), these landmarks have similar fiber connection patterns across individuals, as shown in Fig 2(c). Then 

we extracted the n-ring surface neighborhood of all DICCCOL landmarks. Finally the rs-fMRI signals on all of 

these neighborhood voxels were extracted as sampling signals and were aggregated into a signal matrix S′. Here, 

we sampled the 0-ring, 2-ring, 4-ring and 6-ring neighborhood of DICCCOL landmarks. 

 

In addition to the DICCCOL-based sampling, we also performed no sampling (using whole-brain signals, that is, 

S = D × A) and statistical random sampling (now S′ denotes the randomly sampled signals in Fig.2(b)) for the 

purpose of comparison. To conduct a fair comparison, we sampled the same number of points with 

DICCCOL-based sampling for random sampling, that is, we sampled 358, 4709, 14199 and 25980 signals, 



corresponding to the number of signals of 0-ring, 2-ring, 4-ring and 6-ring DICCCOL sampling. Furthermore, we 

selected the same parameters for all of these three sampling methods, that is, the number of dictionary atom is 400, 

the sparsity regularization parameter λ=0.05, and set the batch size times iteration divided by the number of 

signals equals 4, and etc. The rationale of parameter selection is referred to literature reports (Mairal et al. 2010; 

Lv et al. 2014a).   

 

Finally, we mapped each row in the A matrix back to the brain volume and examined their spatial distribution 

patterns, through which functional network components can be visualized and characterized on brain volumes. 

These network components are then identified as the known RSNs in the following section. 

 

Identifying and Evaluating RSNs by Matching With Templates  

To determine and evaluate the RSNs, we defined a metric named as Spatial Matching Ratio for checking the 

spatial similarity between the identified RSNs and the RSN template. In this work, we adopted the ten 

well-defined RSN templates provided in the literature (Smith et al. 2009). For the rs-fMRI data of each subject, 

we identified each RSN by matching its spatial weight map with each specific RSN template. Those network 

components with the maximum Spatial Matching Ratio (SMR) were selected as corresponding RSNs. The Spatial 

Matching Ratio is defined as follows: 

SMR(X, T) =
|X ∩ T|

|X ∪ T|
                                                                             (4) 

where X is the spatial map of network component and T is the RSN template. |X ∩ T| and |X ∪ T| are the 

numbers of voxels in both X and T and in X or T, respectively. Notably, before the comparison of X and T, we 

registered all X images to T via the linear image registration method of FSL FLIRT. 

 

Results and Discussion 

By applying the DICCCOL sampling, random sampling and no sampling (Lv et al. 2014b) on 30 randomly 

selected subjects from the HCP datasets according to the procedure shown in Fig.1, we generated their atomic 

app:ds:certainly


dictionaries and corresponding coefficient matrices. For DICCCOL-based sampling, we sampled 0, 2, 4, 6 rings 

of points centered on DICCCOL landmarks, and they have 358, 4709, 14199, and 25980 rs-fMRI signals, 

respectively. For random sampling, we sampled the same number of points as corresponding n-ring 

DICCCOL-based sampling for the fairness of comparison and evaluation. Their results are as follows. 

 

Comparison of Temporal Dictionary Atoms 

To validate the effectiveness of the resulted dictionaries from the two sampling methods (DICCCOL-based and 

random sampling), we compared each dictionary atom with that of no sampling method. First, we identified the 

RSNs by matching them with the ten well-defined RSN templates (Smith et al. 2009). Those with the highest 

spatial matching ratio were selected out of the 400 network components as the RSNs. For the DICCCOL-based 

sampling, random sampling and whole brain signal without sampling, we performed the same identification 

procedure to find the most matched RSNs with the templates. Then we traced back to find the ten corresponding 

dictionary atoms associated with the ten identified RSNs. Thus we can compare the time series differences of the 

derived dictionaries by different sampling methods, as shown in Fig.3. We quantitatively computed the Pearson 

correlation coefficients between the dictionaries by these sampling methods, as listed as in Table 1, and plotted the 

change curves of the averaged Pearson correlation coefficients on n rings (Fig.4 (a)(b)). The blue and green ones 

are the Pearson correlation coefficients of DICCCOL-based sampling and random sampling, respectively. 

 

From Fig.3, we can see that the atoms of DICCCOL-based sampling have much higher similarity with that of no 

sampling than random sampling, especially for the 0-ring DICCCOL-based sampling. As was also demonstrated 

by Table 1, the averaged Pearson correlation coefficients are 0.6642 and 0.2882, respectively. Meanwhile, we can 

see that for both DICCCOL-based and random sampling, the Pearson correlation coefficients are increased with 

the number of rings. It is reasonable considering that more sampled points contain more information. With the 

number of rings increasing, the Pearson correlation coefficients from random sampling increase fast. Random 

sampling and the DICCCOL-based sampling have almost the same high similarity (0.6921 vs 0.6508) with no 

sampling when n equals to 6. It was also shown in Fig.3(b) and Figs.4(a-b), but the Pearson correlation 



coefficients from 6-ring corresponding random sampling is still lower than that of 0-ring DICCCOL-based 

sampling (0.6508<0.6642). We checked their Spatial Match Ratio with the increment of rings in the next section 

and Fig.4(c-d). However, we can see that the Pearson correlation coefficients from 6-ring DICCCOL-based 

sampling is lower than that from 0-ring DICCCOL-based sampling at specific situations, e.g., the two WDs of 

atom1 are 0.822 (0-ring) and 0.808 (6-ring) as shown in Fig. 3. Our explanation is that DICCCOL landmark itself 

provided more accurate information for atom 1, while its 6-ring neighborhood contains some other information 

different from atom 1. Regardless, on average, the Pearson correlation coefficients from 6-ring is larger than 

0-ring DICCCOL-based sampling, as shown in Table 1 and Fig. 4(a-b). 

       

In short, we can conclude that the dictionaries from DICCCOL-based sampling have substantially higher 

similarity with those of no sampling, compared with statistical random sampling. Therefore the dictionaries 

obtained by DICCCOL-based sampling are much more representative of the whole brain’s functional activities 

information. This result also suggests that DICCCOLs cover key functional areas of the brains, offering 

supporting evidence of the effectiveness and validity of the DICCCOL system (Zhu et al. 2013).  
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atom 7  

atom 8  

atom 9  

atom 10  

(a) 0-ring                 (b)  6-ring 

Figure 3. The time series signals of the 10 dictionary atoms resulted from DICCCOL-based sampling (blue 

curve), random sampling (green curve) and no sampling methods (red curve, as a baseline for comparison) from 

one randomly selected subject. For the convenience of inspect and limited space, only 200 time points are shown 
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here, and only the atoms from 0-ring (a) and 6-ring (b) sampling are shown as examples. The blue curve 

represents the time series signal of atom from 0-ring (a)/6-ring (b) DICCCOL-based sampling. The green curve 

represents the time signals of atom generated by random sampling with the same number of points as n-ring 

DICCCOL-based sampling. WD / WR means the Pearson correlation coefficient between atom of whole brain and 

that of n-ring DICCCOL-based sampling/corresponding random sampling.  

  

Table 1. The Pearson correlations of 10 corresponding dictionary atoms between the two sampling methods and 

no sampling method. Each item was an averaged value from 30 subjects. “Dn” represents n-ring DICCCOL-based 

sampling and “Rn” represents sampling randomly the same number of points with the n-ring DICCCOL-based 

sampling.  

 D0 R0 D2 R2 D4 R4 D6 R6 

atom0 0.7693 0.2772 0.7871 0.5021 0.7999 0.5438 0.8064 0.6007 

atom1 0.6261 0.2759 0.6405 0.4567 0.6644 0.4676 0.6707 0.5050 

atom2 0.6995 0.2747 0.7026 0.4846 0.7335 0.5936 0.7244 0.7293 

atom3 0.7337 0.3130 0.7423 0.4432 0.7547 0.5667 0.7560 0.6454 

atom4 0.5275 0.2886 0.5168 0.4474 0.5146 0.5116 0.5283 0.5180 

atom5 0.7515 0.3688 0.7591 0.5872 0.7685 0.7483 0.7700 0.7832 

atom6 0.6736 0.2886 0.6688 0.6017 0.6917 0.7174 0.6848 0.7259 

atom7 0.6131 0.2751 0.5968 0.5086 0.6078 0.5460 0.6198 0.6137 

atom8 0.5737 0.2942 0.5983 0.5163 0.6188 0.6923 0.6163 0.7784 

atom9 0.6740 0.2534 0.6931 0.4953 0.6948 0.5586 0.7445 0.6081 

Mean 0.6642 0.2882 0.6705 0.5043 0.6849 0.5946 0.6921 0.6508 
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Figure 4. The change curves of the averaged Pearson correlation coefficients and Spatial Match Ratio on different 

rings of neighborhoods. (a) and (b) are the curves of the averaged Pearson correlation coefficients resulted from 

DICCCOL-based (blue curve) and random sampling (green one), respectively, their corresponding averaged SMR 

curves of RSNs are (c) and (d), respectively.  

 

Comparison of Spatial RSNs 

We identified 10 RSNs by matching each network component with 10 RSN templates (Smith et al. 2009), and 

performed this same step for the three sampling methods, respectively. Then we compared their spatial maps of 

the RSNs with 10 templates. The spatial maps from two randomly selected subjects and group-averaged maps 

were shown in Fig.5, and for the convenience of checking and evaluating, these spatial maps were overlaid on 

MNI152 template images. Quantitatively, we computed the SMRs of RSNs with 10 templates, as shown in Table 

2. We also plotted the change curves of SMRs on the number of rings, as shown in Fig.4 (c) and (d).  

 

We can see from Fig. 5 that the RSNs were successfully identified from both whole brain’s signals (no-sampling) 

and DICCCOL-based sampling. Moreover, the DICCCOL-based sampling has almost the same good results as 

those by no sampling method, which demonstrates that the rs-fMRI signals of DICCCOL-based sampling can 

well represent the rs-fMRI signal of the whole brain in terms of learning sparse dictionaries without losing much 

information. It has also been demonstrated in Table 2 that the SMR from DICCCOL-based sampling and whole 

brain’s signals have very close values. However, the random sampling method has much lower SMR, especially 

for the random sampling “R0” (358 sampled points) which have the same number of sampled points with 0-ring 

DICCCOL-based sampling. In order to check whether this difference/improvement obtained by DICCCOL-based 

sampling is significant compared with random sampling, we statistically analyzed the Pearson correlation and 

spatial matching ratio of these two group of sampling methods by one-tailed t-test, as shown in Figure 6. We can 

see that the difference is more significant when the number of sampling points is relatively small, and the two 

sampling method have no statistical difference when the number of sampling reaches 25980 (6-ring). Similarly, 



we can also see from Fig.4 (c-d) that DICCCOL-based sampling achieved better performance than random 

sampling. Notably, all SMR values are not very high, even for the no sampling it is 0.493, since we identified 

these RSNs merely from 30 subjects while these templates were generated from about 30,000 brains (Smith et al. 

2009). Therefore we check the two sampling methods with no sampling, not with the templates, and found that 

even for the 0-ring of sampling (358 points), the DICCCOL sampling (D0) achieved reasonably good accuracy 

(0.409 vs 0.493). It should be noted that the steep change occurs at the 2-ring DICCCOL sampling (Fig.4 (c)), 

indicating that it might be a better choice when considering a trade-off between sampling size and accuracy.  

RSN1        

RSN2        



RSN3        

RSN4        

RSN5        



RSN6        

RSN7        

RSN8        



RSN9        

RSN10        

          Subject 1                    Subject 2               group-averaged 

Figure 5. The spatial maps of RSNs by DICCCOL sampling, no sampling and the templates. In each panel of 

RSNs, the first row is the RSN template, the second row represents whole brain’s signals, the third and fourth one 

represent 0-ring DICCCOL sampling and corresponding random sampling with the same number of sampled 

points, respectively. The first and second columns are the results from two randomly selected subjects except the 

first row in each panel, which is putted there for the convenience of checking, and the third column shows the 

group-averaged results.  

 

Table 2. The SMR of 10 corresponding identified RSNs from the two sampling methods and no sampling method.  

“Dn” and “Rn” have the same meaning with that of Table 1, “W” means using whole brain’s signals (no 

sampling).  



 W D0 R0 D2 R2 D4 R4 D6 R6 

RSN0 0.624 0.611 0.291 0.626 0.421 0.679 0.438 0.700 0.463 

RSN1 0.522 0.431 0.222 0.544 0.391 0.546 0.389 0.544 0.396 

RSN2 0.435 0.387 0.205 0.417 0.405 0.443 0.444 0.497 0.473 

RSN3 0.454 0.401 0.157 0.448 0.400 0.470 0.411 0.502 0.409 

RSN4 0.429 0.194 0.178 0.450 0.238 0.491 0.297 0.322 0.315 

RSN5 0.504 0.487 0.198 0.434 0.454 0.389 0.431 0.565 0.494 

RSN6 0.748 0.455 0.149 0.388 0.321 0.459 0.267 0.507 0.356 

RSN7 0.421 0.341 0.246 0.231 0.350 0.207 0.351 0.222 0.389 

RSN8 0.304 0.371 0.254 0.465 0.274 0.484 0.296 0.463 0.294 

RSN9 0.408 0.373 0.293 0.417 0.348 0.435 0.353 0.473 0.363 

Mean 0.493 0.409 0.219 0.445 0.362 0.463 0.369 0.480 0.399 

 

 

Figure 6. The statistical comparison between random sampling and DICCCOL-based sampling. The p values are 

shown on the top of bar only if p<0.05. 

 

Comparison of Time Cost and Representation Error 

Additionally, we evaluated and compared the computing time cost for dictionary learning, which is the major part 

of the online dictionary learning and sparse coding (Mairal et al. 2010) of different sampling methods. The 

dictionary learning step costs more time than the sparse coding step (whose time cost is fixed), and the difference 

of time cost heavily depends on the number of rs-fMRI signals given that the size of dictionary is fixed as 400. So 

we just computed and compared the time cost of dictionary learning. Each whole brain has about 2.4×10
5
 rs-fMRI 

signals, and a 0-ring, 2-ring, 4-ring and 6-ring DICCCOL-based sampling resulted in 358, 4709, 14199 and 25980 

signals, accordingly, the random sampling have the same number of sampled points with n-ring DICCCOL 
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sampling for the fairness of comparison. Their averaged time costs among 30 subjects were computed on a cluster 

with an Intel® Xeon CPU X5650, and the results are listed in the fourth row of Table 3. It is obvious that all 

sampling methods are faster than no sampling, especially for 2-ring DICCCOL-based sampling, it is 

approximately 10 times faster than no sampling without sacrificing much accuracy for sparsely representing the 

whole brain’s rs-fMRI signals.  

 

Furthermore, we computed the reconstruction/representation error of different sampling methods by the following 

expression (Mairal et al. 2010):  

R =
1

n
∑

1

2
||Si −

n

i=1

DAi||2
2                                  (5) 

The results were list in the fifth row of Table 3, in which we can see that the almost all reconstruction error are 

tolerable except that of the 0-ring random sampling (having the same number with 0-ring DICCCOL sampling). 

This also demonstrated the effectiveness of sampling methods and dictionary learning and sparse coding 

(Abolghasemi et al. 2013). 

 

Table 3. The overall comparison of the three sampling methods. Each item is an averaged result among 30 

subjects. For the convenience of overall comparison, the final results of Table 1 and 2 were also incorporated into 

Table 3. “W”, “Dn” and “Rn” have the same meaning with that of Table 1. 

 W D0 R0 D2 R2 D4 R4 D6 R6 

Pearson Correlation N/A 0.6642 0.2882 0.6705 0.5043 0.6849 0.5946 0.6921 0.6508 

SMR 0.493 0.409 0.219 0.445 0.362 0.463 0.369 0.480 0.399 

Time Cost 311.44s 15.25s 17.89s 30.17s 31.23s 41.57s 49.48s 57.18s 60.12s 

Error 0.629 2.245 5070.9 1.325 2.915 1.276 1.856 1.243 1.732 

 

 

Significant improvement of sampling-based method on fMRI Big Data 

In order to inspect the significant improvement of sampling-based method on big data, especially for fMRI big 

app:ds:tolerable


data, we applied uniform sampling method on the 1000 Functional Connectomes Project 

(http://fcon_1000.projects.nitrc.org/), to test the time economy and accuracy for identifying the resting state 

networks. It is noted that due to the lack of DTI image in the 1000 Functional Connectomes Project dataset, 

DICCCOL-based sampling is not conducted in this subsection. The procedure of uniform sampling used in this 

subsection is primarily for the purpose of testing whether/how sampling significantly speed-ups sparse coding of 

rs-fMRI big data and of course other types of sampling methods could be explored in the future. The 1000 

Functional Connectomes Project is a collection of resting-state fMRI datasets from more than 1000 subjects, and 

thus this large resting-state data offers the unique opportunity to study resting state networks at both subject and 

study level (Yan et al. 2013; Kalcher et al. 2012). We used the uniform sampling as an example to identify the 

resting state networks, and compared its time cost with no sampling method, by performing the codes on our 

Hafni-Enabled Largescale Platform for Neuroimaging Informatics (HELPNI), which is an integrated solution to 

archive and manage primary and processed data as well as to analyze and to process large scale data automatically 

and structurally. The average time of obtaining the dictionary for one brain is about 1.05 seconds using uniform 

sampling method, whereas the time cost is 11.17 seconds for no sampling method. We can see that the 

sampling-based method can bring around ten times speed-up, this will save much time when the subject number is 

1000 and even more, such as the 1000 Functional Connectomes Project. It is significant improvement when we 

intend to find out interesting information from fMRI big data and it is exactly the meaning of big data. Notably，

for a fair comparison, we counted the time cost by running the program on only one CPU core (Intel® Xeon® 

E5-2650 v2 2.60GHz). 

 

We further checked the spatial maps with sampling method. The identified 10 group-wise resting state networks 

from the 5 randomly selected datasets by the sampling-based method are shown in Fig.7. Fig.8 illustrates the 

individual resting state networks from a randomly select subject of the 5 datasets. From Fig.7 and Fig.8, we can 

see that the identified ten RSN networks are quite consistent with the ten templates (Smith et al. 2009). 

Quantitative measurement between the identified resting networks and templates are shown in Table 4 and Table 5. 

From these results, we can see that the sampling-based method is effective and feasible. The sampling-based 

http://fcon_1000.projects.nitrc.org/


method on fMRI big data shows significant speedup and comparable results. 

 

Figure 7. The ten group-wise RSN networks from 5 randomly select datasets (Baltimore, Beijing, Berlin, 

Cambridge and Cleveland) in 1000 Functional Connectomes Project, identified by the 2-ring DICCCOL-based 

sampling method. The second row shows the RSN templates for comparison and the following rows show the 

identified group-wise networks from different datasets.  



 

Figure 8. The individual RSN networks identified by the 2-ring DICCCOL-based sampling method, one 

randomly selected subject for each dataset. 

 

Table 4. Spatial match ratio between identified group-wise RSN networks by DICCCOL sampling method and 

template for different datasets. 

 RSN1 RSN2 RSN3 RSN4 RSN5 RSN6 RSN7 RSN8 RSN9 RSN10 

Baltimore 0.58 0.59 0.30 0.42 0.56 0.30 0.42 0.34 0.32 0.44 

Beijing 0.52 0.59 0.27 0.46 0.59 0.22 0.51 0.32 0.38 0.38 

Berlin 0.42 0.33 0.25 0.40 0.56 0.20 0.47 0.34 0.22 0.29 

Cambridge 0.58 0.62 0.33 0.52 0.44 0.27 0.57 0.39 0.48 0.48 

Cleveland 0.47 0.50 0.25 0.40 0.55 0.19 0.46 0.35 0.29 0.37 

 
 

Table 5. Spatial match ratio between identified individual RSN networks by DICCCOL sampling method and 

templates for different datasets. Represented as MEAN±STD. 



 RSN1 RSN2 RSN3 RSN4 RSN5 RSN6 RSN7 RSN8 RSN9 RSN10 

Baltimore 0.25±0.06 0.17±0.05 0.11±0.03 0.19±0.03 0.17±0.03 0.12±0.04 0.12±0.03 0.14±0.03 0.12±0.02 0.13±0.03 

Beijing 0.19±0.06 0.16±0.06 0.11±0.03 0.18±0.04 0.16±0.03 0.10±0.02 0.16±0.04 0.14±0.04 0.13±0.03 0.13±0.03 

Berlin 0.20±0.04 0.15±0.05 0.09±0.04 0.19±0.04 0.15±0.03 0.11±0.02 0.15±0.03 0.16±0.03 0.12±0.02 0.13±0.03 

Cambridge 0.24±0.05 0.19±0.06 0.12±0.03 0.20±0.04 0.18±0.03 0.13±0.03 0.17±0.03 0.19±0.03 0.14±0.03 0.14±0.03 

Cleveland 0.20±0.08 0.16±0.07 0.09±0.03 0.17±0.03 0.12±0.04 0.11±0.02 0.14±0.03 0.16±0.04 0.15±0.03 0.12±0.03 

 
 

Conclusion 

In this paper, we presented and evaluated a novel signal sampling strategy for efficient sparse representation of 

rs-fMRI data. We quantitatively and qualitatively compared three sampling schemes and experimental results 

demonstrated that the DICCCOL-based sampling signals exhibit much better performance than statistical random 

sampling for identifying RSNs, and have almost the same high performance as no sampling method. Also, the 

signal sampling method achieved around ten times speed-up. Thus, we can conclude that DICCCOL-based 

sampling is able to well represent the whole brain’s rs-fMRI signals with lower cost. However, we agree that there 

are still some other advanced statistical sampling methods which were not compared with DICCCOL-based 

sampling in this stage. Our main purpose was not to demonstrate DICCCOL-based sampling is the best, but rather 

that it has enough accuracy and good speed-up. More importantly, it provides us with important structural 

information, which is beneficial to our later works, for example, we can further decrease the number of sampling 

points and find out which DICCCOL landmarks are more important for constructing resting state networks and 

which are more crucial for constructing task-evoked network. However, the statistical methods cannot provide 

comparable structural information and cannot combine function with structure of the brain. It is of important 

significance for brain imaging big-data to reduce the data size but not to lose much information, because a 4-D 

fMRI data needs very much time and memory space to be processed if there’s no efficient sampling method, we 

made the initial effort to deal with this challenge via the different sampling methods in this paper, and we expect 

more and more sampling methods for brain imaging big data could be explored. For instance, in the future, we 

plan to explore other statistically-principled sampling methods such as the leverage score based sampling methods 

(Meng et al. 2014; Mahoney 2011; Ma et al. 2015) and other dictionary learning algorithms such as Stochastic 



Coordinate Coding (Lin et al. 2014) combined with DICCCOL-based sampling to represent rs-fMRI information 

of brain more efficiently, and apply and evaluate them on more fMRI datasets. 
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