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Abstract—Task-based fMRI (tfMRI) has been widely used to 

explore functional brain networks via predefined stimulus 

paradigm in the fMRI scan. Traditionally, the general linear 

model (GLM) has been a dominant approach to detect task-evoked 

networks. However, GLM focuses on task-evoked or event-evoked 

brain responses and possibly ignores the intrinsic brain functions. 

In comparison, dictionary learning and sparse coding methods 

have attracted much attention recently, and these methods have 

shown the promise of automatically and systematically 

decomposing fMRI signals into meaningful task-evoked and 

intrinsic concurrent networks. Nevertheless, two notable 

limitations of current data-driven dictionary learning method are 

that the prior knowledge of task paradigm is not sufficiently 

utilized and that the establishment of correspondences among 

dictionary atoms in different brains have been challenging. In this 

paper, we propose a novel supervised dictionary learning and 

sparse coding method for inferring functional networks from 

tfMRI data, which takes both of the advantages of model-driven 

method and data-driven method. The basic idea is to fix the task 

stimulus curves as predefined model-driven dictionary atoms and 

only optimize the other portion of data-driven dictionary atoms.  

Application of this novel methodology on the publicly available 

human connectome project (HCP) tfMRI datasets has achieved 

promising results.  

 
Index Terms—Task fMRI, group-wise, sparse   

 

I. INTRODUCTION 

ASK-based fMRI has been widely used to identify brain 

regions and brain networks that are functionally involved 

in a specific task, and has greatly advanced our understanding 

of functional localizations within the brain [1-4]. Traditionally, 

the general linear model (GLM) [5-9] has been the dominant 

approach to detecting task-evoked networks due to its 

simplicity, robustness and wide availability. This hypothesis-

driven method utilizes the prior knowledge of task or event 

paradigm together with a canonical hemodynamic response 

function (HRF) [10] to construct regressors for the general 

linear model to find activation maps related to a specific task or 
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event-related performance. Although prior work has proven the 

great advantages of the hypothesis-driven method for task-

fMRI data analysis, a possible drawback of GLM is that it 

focuses on task-evoked or event-evoked brain responses and 

possibly ignores the intrinsic brain functions [11] involving 

maintenance of information processing and responding to 

environmental demands which consumes the largest part of 

brain energy [12]. On the other hand, a variety of data-driven 

approaches have been developed, including principal 

component analysis (PCA) [13-14] and independent component 

analysis (ICA) [15-19],  to explore the intrinsic brain functional 

networks. Currently, the ICA-based methods have become the 

dominant approach in data-driven fMRI analysis [20]. The 

basic assumption of ICA lies in that the fMRI data has been 

linearly mixed by a set of sources which are spatially (spatial 

ICA) [15] or temporally (temporal ICA) [17] independent and 

then the problem becomes one of "unmixing" the spatially or 

temporally independent fMRI data sources. ICA-based 

methods have been shown to be useful in resting state fMRI 

data analysis [21-22] for which prior paradigm knowledge is 

not available. However, ICA is not well adapted to the analysis 

of task and event-related fMRI data [18] for the neglect of task 

paradigm information. What’s more, recent studies [20, 23] 

proved that the fundamental assumption of independence of the 

patterns is not guaranteed in practice. Many hemodynamics are 

correlated with each other due to the interconnections between 

biological neural networks and the preprocessing steps 

including smoothing, normalization and realignment [20]. 

Furthermore, there is not sufficient neural foundation or 

physical reason for the extracted components corresponding to 

different brain activity patterns to be statistically independent 

[24]. Therefore, algorithms which are equipped with other 

mathematical properties of fMRI data should be explored and 

developed for data-driven fMRI analysis. 

Recently, the dictionary learning and sparse coding 

methodology developed in the machine learning and pattern 

recognition fields is purely data-driven and has been shown to 
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be efficient in learning adaptive, over-complete and diverse 

features for optimal representations [25-28]. The aim of sparse 

representation is to learn a set of basis vectors and represent the 

original signals as a linear combination of these bases. It should 

be noticed that only a few bases will be applied when 

reconstructing a specific signal in these methods which ensured 

the signals are sparsely represent by the basis vectors. At the 

same time, a variety of neuroscience studies have reported the 

sparse response of the neural activity [29-31] in brain. 

Olshaunsen et al. [29] observed that sparse linear codes for 

natural images will develop similar receptive fields to the 

simple cells in the primary visual cortex. Similarly, Quiroga et 

al. [30] showed that neurons from the medial temporal lobe, 

amygdala, parahippocampal gyrus, entorhinal cortex, and 

hippocampus fires selectively and sparsely respond to stimuli. 

These findings suggest that a sparse set of brain neurons 

respond to specific stimuli rather than each input. The sparse 

response principle of brain neural activity coincides with the 

intrinsic nature of sparse representation methods, which 

suggests sparse representation may be a possible solution to 

brain activity detection. Inspired by these exciting results in 

both fields, several studies applying sparse representation 

methods [25,32-34] to brain data analysis, including MRI [35-

36], EEG [37-40] and fMRI [41-48], were proposed. 

Abolghasemi et al. developed a fast incoherent K-SVD method 

for brain regions activation detection [49] and Eavani et al. used 

sparse representation method to identify functional 

subnetworks in resting-state fMRI data [50]. Wang et al. 

achieved better detection sensitivity by applying a sparse 

approximation coefficient prior in ICA decomposition [51]. In 

addition, Lee et al. designed a sparse general linear model 

framework [20] and Ramezani et al. proposed a joint sparse 

representation analysis (jSRA) to identify common information 

across multi-task fMRI experiments [52]. These studies 

demonstrated the advantages of sparse analysis methods. 

Recently, Lv and Zhang et al. [53-55] proposed to using 

dictionary learning method to identify function brain networks 

based on the assumption that the components of each voxel's 

fMRI signal are sparse and the neural integration is linear. The 

basic idea [53-55] is to aggregate all of dozens (or hundreds) of 

thousands of fMRI signals within the whole brain of one subject 

into a big data matrix, which is subsequently factorized into an 

over-complete basis signal dictionary and a reference 

coefficient matrix via dictionary learning and sparse coding 

algorithms [25]. Particularly, each dictionary column 

(dictionary atom) represents the BOLD signal pattern of the 

functional brain activities of a specific brain network and its 

corresponding reference coefficient vector (a row vector in 

coefficient matrix) stands for the spatial distribution of this 

brain network [54-55].An important characteristic of this 

framework is that the decomposed reference coefficient matrix 

naturally reveals the spatial interaction patterns among inferred 

brain networks [54-55]. This novel data-driven strategy 

naturally accounts for that brain regions might be involved in 

multiple concurrent functional processes [56-58] and thus their 

fMRI signals are composed of various intrinsic components 

[55,59].  

Although previous sparse representation based methods have 

demonstrated great advantages, there are two notable remaining 

limitations in current data-driven dictionary learning methods: 

1) the prior knowledge of task paradigm is not sufficiently 

utilized yet. Task paradigm information is typically applied 

after the dictionary learning procedure in selecting the 

components network of interest through sorting the component 

time courses based on some similarity criteria [54-55]. Such 

method, though useful, does not utilize the task paradigm 

information directly in the dictionary learning algorithm; 2) the 

establishment of correspondences among learned task-evoked 

dictionary atoms or network components in different brains 

have been challenging. Since these network components are 

learned in an unsupervised way individually, it is hard to 

directly compare brain activities in the analysis of multiple 

subjects. Currently, such comparisons are achieved by 

combining sorting method and visual check [54-55], which is 

quite time consuming and difficult. To address these two 

limitations, in this paper, we propose a novel supervised 

dictionary learning and sparse coding method for inferring 

concurrent functional networks from tfMRI data. The 

underlying basic idea is to fix the task stimulus curves as 

predefined model-driven dictionary atoms and only optimize 

other portion of data-driven dictionary atoms in the dictionary 

learning procedure. Intuitively, this novel strategy utilizes both 

of the advantages of model-driven method and data-driven 

method. The strategy of utilizing task paradigm information 

directly in the dictionary learning procedure has several major 

advantages. First, by incorporating paradigm information into 

the algorithm could avoid the model-driven components 

converge to local minimum thus it may improve the 

performance of model-driven networks. Second, it is 

straightforward to establish the correspondences of the inferred 

task-related networks across individuals in that the predefined 

dictionary atoms based on stimulus curves intrinsically offer the 

match. This novel framework has been applied on the publicly 

available human connectome project (HCP) tfMRI datasets 

[60], and meaningful functional networks including both 

model-driven brain networks and intrinsic brain networks 

(resting state brain networks) have been identified.  

The remaining parts of the paper are organized as follows. 

The materials and methods are presented in Section II, 

including data acquisition and preprocessing, theory and 

algorithm of supervised dictionary learning. Section III 

provides experimental results and Section IV provides a 

discussion and conclusion.  

II. MATERIALS AND METHODS 

A. Overview 

Fig.1 summarizes the computational pipeline of exploring 

concurrent functional networks via supervised dictionary 

learning and sparse coding method. First, for each subject, the 

whole-brain fMRI signals are extracted and normalized (zero 

mean and standard deviation of 1), and then aggregated into a 

signal matrix S (n signals with t time points) (Fig.1a). After that, 

the signal data matrix is sparsely represented with a signal 
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dictionary D and the corresponding coefficient matrix A by 

using the novel supervised online dictionary learning and sparse 

coding methods (Fig.1b).Specifically, we define the constant 

part of the dictionary Dc (the red part in Fig.1b) as the 

predefined model-driven task stimulus curves, and only 

optimize the other part of the data-driven learned dictionary Dl 

(the green part in Fig.1b) by learning from the fMRI signals.  

The signal shape of each dictionary column in D represents the 

BOLD signal pattern of the functional activities of a specific 

brain network and its corresponding reference coefficient 

vector in A stands for the spatial distribution of this brain 

network.  Since each row in the coefficient matrix A represents 

a network distribution in the brain volume, the coefficient 

matrix A will also be reconstructed into two parts, one 

representing model-driven task-evoked networks in Ac (red part 

in Fig.1b), and the other representing data-driven concurrent 

networks in Al  (green part in Fig.1b). 

 
Fig.1. The computational framework of supervised dictionary learning and 

sparse coding of whole-brain tfMRI signals for inferring concurrent functional 
networks. Here T-network and R-network stand for task-evoked network from 

model-driven networks and resting-state network from data-driven networks, 

respectively.  

 

B. Data Acquisition and Pre-processing 

The data source is the HCP Q1 release [60] and the primary 

goals of tfMRI datasets in HCP were to identify as many 

"nodes" as possible in the healthy adult brain that can guide, 

validate and compare the network connectivity. To achieve 

these goals, a broad battery of tasks were developed to identify 

node locations in as a wide range of neural systems as is feasible 

within realistic time constraints. Therefore, the HCP tfMRI 

datasets provide one of the most systematic and comprehensive 

mapping between connectome-scale functional networks and 

tasks over a large population of subjects in the literature so far. 

In the HCP Q1 release data set, the tfMRI data were provided 

for 68 participants with 7 task designs and  A brief description 

of each task could be found in supplemental materials. 

The detailed acquisition parameters of HCP tfMRI data are 

as follows:  90×104 matrix, 220mm FOV, 72 slices, TR=0.72s, 

TE=33.1ms, flip angle = 52°, BW =2290 Hz/Px, in-plane FOV 

= 208 × 180 mm, 2.0 mm isotropic voxels. For tfMRI images, 

the preprocessing pipelines included motion correction, spatial 

smoothing, temporal pre-whitening, slice time correction, 

global drift removal. More detailed task description and task 

paradigm could be found in literature [60]. 

C. Supervised Dictionary Learning and Sparse 

Representation 

Dictionary learning and sparse representation is an 

unsupervised learning algorithm which aims to find a basis set 

in the data and learn sparse coefficients to sparsely represent the 

data. Although these methods [20, 55, 52-53] have shown 

promising results, many studies which combined sparse coding 

with some constraints [28, 70-71] have achieved inspiring 

results in some cases. Wright and his colleagues [26] 

constrained different classes of test samples as dictionary for 

face recognition to improve the classification result and Zheng 

and his colleagues utilized graph information in sparse coding 

to enhance image representation.  Recent study has suggested 

that the real potential of sparse coding methods for fMRI 

analysis will increase when the prior information is 

incorporated into the estimation scheme [72], if possible. In this 

paper, we propose a novel supervised dictionary learning and 

sparse coding method to incorporate task paradigms for 

inferring concurrent functional networks from tfMRI data. The 

underlying basic idea is to fix the task stimulus curves as 

predefined model-driven dictionary atoms and only optimize 

other portion of data-driven dictionary atoms in the dictionary 

learning procedure. Specifically the predefined model-driven 

dictionary atoms (the constant part   𝐃c in supervised dictionary 

learning procedure) are constructed by the convolution of task 

paradigms and the haemodynamic response function (HRF) 

using the FSL toolbox [6]. The number of the fixed atoms is 

based on the number of stimuli applied in the task. In our 

experiments, there are two constrained dictionary atoms in 

emotion, gambling, language, relational and social task 

datasets, there are six fixed atoms in motor task dataset and four 

constrained dictionary atoms in working memory task dataset, 

and the dictionary size is 400 at the same time. The fixed 

dictionary atom number is consistent with the number of stimuli 

and usually occupies less than 1% portion in the total dictionary 

atoms. Our rationale to fix these numbers of dictionary atoms is 

similar with GLM in that part of the activated brain voxel 

activities should follow the stimuli paradigm. Given the tfMRI 

signal matrix Sϵℝ𝑡×𝑛 (Fig. 1a), where n is the number of voxels 

in a subject's brain and t is the number of  fMRI time series 

points, each tfMRI signal in S is modeled as a sparse linear 

combination of atoms of a learned basis dictionary D (Figs.1b), 

i.e., 𝑠𝑖 = 𝐷 × 𝐴𝑖 and S=D×A, where A is the coefficient matrix 

for sparse representation. Particularly, the signal shape of each 

dictionary atom in D represents the functional activities of a 

specific brain network and its corresponding reference 

coefficient vector in A stands for the spatial distribution of this 

brain network [55]. In this work, we aim to learn a meaningful 

and over-complete dictionary 𝐷ϵℝ𝑡×𝑚  (m>t, m<<n), for the 

sparse representation of S. Specifically, 

 

𝐷 = [𝐃c, 𝐷𝑙]𝜖ℝ𝑡×𝑚 ,    𝐃c𝜖ℝ𝑡×𝑚𝑐 ,   𝐷𝑙𝜖ℝ𝑡×𝑚𝑙  (1) 

 

where 𝐃c is the predefined model-driven constant dictionary 

atoms and 𝐷𝑙  is the data-driven dictionary atoms from the 
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tfMRI signals and 𝑚𝑐  and 𝑚𝑙  are atom numbers of constant 

dictionary and learned dictionary, respectively. For the signal 

set  𝑆 = [𝑠1, 𝑠2, … 𝑠𝑛]𝜖ℝ𝑡×𝑛 , the empirical cost function is 

defined in Eq. (2) by averaging the loss of regression of n 

signals. 

𝑓𝑛(𝐷) ≜
1

𝑛
∑ ℓ(𝑠𝑖 , [𝐃𝑐 , 𝐷𝑙]) 

𝑛

𝑖=1

 (2) 

The loss function is defined in Eq. (3) with a ℓ1 

regularization that yields to a sparse resolution of 𝐴𝑖 and here λ 

is a regularization parameter to trade-off the regression residual 

and sparsity level. 

ℓ(𝑠𝑖 , 𝐷) ≜ 𝑚𝑖𝑛
𝐴𝑖𝜖ℝ𝑚

1

2
||𝑠𝑖 − [𝐃𝑐 , 𝐷𝑙]𝐴𝑖||2

2 + 𝜆||𝐴𝑖||1 (3) 

As we focus on the fluctuation shapes of basis fMRI 

activities and aim to prevent D from arbitrarily large values, the 

columns 𝑑1, 𝑑2, … … 𝑑𝑚 are constrained by Eq. (4). 

𝐶 ≜ {𝐷𝜖ℝ𝑡×𝑚   𝑠. 𝑡.   ⩝ 𝑗 = 1, … 𝑚, 𝑑𝑗
𝑇𝑑𝑗 ≤ 1} (4) 

𝑚𝑖𝑛
𝐷𝜖𝐶,𝛼𝜖ℝ𝑚×𝑛 

1

2
||𝑆 − [𝐃c, 𝐷𝑙]𝐴||𝐹

2 + 𝜆||𝐴||1,1  (5) 

 

In brief, the problem of supervised dictionary learning can be 

rewritten as a matrix factorization problem in Eq. (5) [25]. In 

order to solve this problem, we adopted the modified online 

dictionary learning and sparse coding method (SPAMS package 

in [25]), that is, the newly developed/rewrote codes of 

supervised dictionary learning for this work. The whole 

supervised dictionary learning and sparse coding algorithm 

pipeline is summarized in Algorithm 1 below.  

 

Algorithm 1. The supervised online dictionary learning and 

sparse coding. 

 

Input: 𝑆 = [𝑠1, 𝑠2, … 𝑠𝑛]𝜖ℝ𝑡×𝑛 , λ  ϵℝ , 𝐷0 =
[ 𝐃𝑐, 𝐷𝑙0]𝜖ℝ𝑡×𝑚   (initial dictionary,𝑫𝑐 is predefined, 𝐷𝑙0  is 

randomly generated, T (number of iteration). 

1:for iter=1 to T  

2:       i= iter%n  (T>n) 

3:       Draw 𝑠𝑖 from S 

4:       Sparse coding using Least-angle Regression: 

              𝐴𝑖 ≜ argmin
Aiϵℝm

1

2
||𝑠𝑖 − 𝐃(𝐭−𝟏)𝐴𝑖||

2

2

+ λ||𝐴𝑖||1
 

5:       Update 𝐷𝑙(𝑡) but keep  𝐃c constant: 

                 𝐷(𝑡) ≜ argmin
𝐷𝑙ϵC

1

2
||𝑠𝑖 − 𝐷(𝑡−1)𝐀𝐢||

2

2

+ λ||𝐀𝐢||1
 

(𝐷(𝑡−1) = [ 𝐃c, 𝐷𝑙(𝑡−1)] ) 

6: end for 

7: Return D and A; 

 

D. Identification of Functional Networks 

With our method, each tfMRI signal matrix Sϵℝ𝑡×𝑛 (Fig. 1a) 

is modeled as a sparse linear combination of atoms of a learned 

basis dictionary D (Figs.1b), i.e., 𝑠𝑖 = 𝐷 × 𝐴𝑖  and S=D×A, 

where A is the coefficient matrix for sparse representation. Each 

atom in the dictionary represents the functional activities of a 

specific brain network and each dimension of its corresponding 

reference coefficient vector associated with a specific atom (the 

corresponding row in A) stands for the spatial distribution of 

this brain network [55]. With the assistance of the preserved 

voxel index, each row in A can be mapped back to the brain 

volume space, which represents the spatial distribution of each 

dictionary atom of D, as shown in Fig.1c.  

Based on the predefined constant task stimulus curves in the 

dictionary, it is quite straightforward to map out all the 

stimulus-specific task-evoked brain networks from  𝐴𝑐. At the 

same time, other concurrent networks, such as resting state 

networks, can be adaptively learned and mapped from 𝐴𝑙. Since 

these data-driven networks are learned in an unsupervised way 

individually, it is hard to group-wisely interpret brain activities 

from 𝐷𝑙 . Therefore, a spatial matching method is employed to 

compare those data-driven networks in 𝐴𝑙  with the well-

established resting state network (RSN) templates in the 

literature [74]. The spatial matching rate is defined as: 

 

𝑅(𝑋, 𝑇) =
|𝑋 ∩ 𝑇|

|𝑇|
  (6) 

where X is the 𝐴𝑙 component network’s spatial map and T is the 

RSN template.  

III. EXPERIMENTAL RESULTS 

The proposed framework has been applied on the seven 

concurrent HCP tfMRI datasets respectively, that is, 

emotion/gambling/language/motor/relational/social and 

working memory tasks. The uncovered model-driven networks 

learned using our methods are examined in Section A, and other 

networks which are corresponding with 𝐷𝑙  are related to data-

driven networks, as shown in Section B.   

 

 
(a) 

Fig.2 (a) The model-driven networks in HCP motor dataset.  (I) The six fixed 

stimulus curve in 𝐃c. (I – IV) Red panels are the corresponding motor task 
evoked networks (M1-M6) reconstructed with our method. Blue panels are the 

activation detected by GLM method. (II) and (III) are two randomly selected 
subjects. (IV) is the group-wise results.   

A. Learned Group-wise Consistent Model-driven Functional 

Networks  

 With our method, we can reconstruct the signal shapes of 

these fixed model-driven dictionary atoms which can be 
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regarded as model-driven networks. For instance, in the HCP 

motor task dataset, the fixed stimulus patterns and their time 

series curves are shown in Fig.2a (I). With our methods, we can 

reconstruct the distributions of  𝐃c1 − 𝐃c6 , which can be 

regarded as task-related networks (represented by M1-M6). 

Their spatial distributions are shown in the red panels of Figs.2a 

(II-IV). Specifically, Figs.2a (II-III) show individual spatial 

maps of two randomly selected subjects, and Fig.2a (IV) show 

the group-wise averaged one across the whole population. For 

comparison, the GLM-based activation detection results are 

also shown in the blue panes of Figs.2a (II- IV) respectively. It 

is interesting that our detected networks are quite similar with 

the GLM-based activation patterns and also are quite group-

wise consistent. In total, we identified 2, 2, 2, 2, 2, 5, and 4 

model-driven networks for emotion (E1-E2 in Fig.2b), 

gambling (G1-G2 in Fig.2b), language (L1-L2 in Fig.2b), motor 

(M1-M6 in Fig.2b), social (S1-S2 in Fig.2b) and working 

memory (W1-W4 in Fig.2b) tasks, respectively. Interestingly, 

similar with the GLM-based activation patterns, these model-

driven networks across all of the HCP Q1 release subjects are 

quite consistent and stable as shown in Fig.2b.  

 

 
(b) 

Fig.2 (b) The model-driven networks in all HCP task datasets and the 

corresponding GLM-derived activation maps in one randomly selected 
subject. (I) is the model-driven network reconstructed with our method, (II) is 

the activation map detected by GLM method and (III) is the fixed stimulus 

curve in 𝐃c. E1-E2, G1-G2, L1-L2, M1-M6, R1-R2, S1-S2 and W1-W4 
correspond to the fixed stimulus paradigm in emotion, gambling, language, 
motor, relational, social and working memory task. 

 

We further compared the averaged model-driven networks 

across all subjects with the corresponding group-wise GLM 

activation maps in Fig.3a and Fig.3b. Fig 3 clearly shows that 

the averaged model-driven networks are quite similar to the 

corresponding group-wise GLM activation maps. Through the 

comparison, the high spatial overlap and group-wise 

consistence suggest that our method can detect quite 

meaningful and reliable model-driven networks. 

Quantitatively, the mean spatial overlap rate of group-wise 

averaged model-driven networks with group-wise GLM 

activation map is detailed in Supplemental Table1 and 

Supplemental Table2. Supplemental Table3 and Supplemental 

Table4 show the spatial overlap rates of model-driven networks 

with GLM activation maps across all HCP Q1 release subjects, 

represented as mean ± std. These high overlap rate results 

demonstrated that the supervised dictionary learning method 

can effectively recover model-driven/ task-evoked networks. 

 

 
(a) 

 
(b) 

Fig.3. Group-wise average model-driven networks by our method and the 

group-wise GLM-derived activation maps in seven tfMRI datasets. (a) Group-

wise average result of model-driven networks by our method and the group-
wise GLM-derived activation maps in emotion, gambling, language, relational, 

social task. (b) Group-wise average result of model-driven networks by our 

method and the group-wise GLM-derived activation maps in motor and 
working memory task. 
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(a) 

 
(b) 

 
(c) 

Fig. 4. The detected nine resting state networks in seven HCP Q1 tfMRI 

datasets. (a) The reconstructed DMN network from 10 randomly selected 
subjects in seven HCP Q1 tfMRI datasets. Limited by the space, only the most 

informative slice overlaid on the mean fMRI image of each subject is shown. 

The color scale of spatial maps detected by our method range from 0.1 to 10. 
(b) The reconstructed frontal network from 10 randomly selected subjects in 

seven HCP Q1 tfMRI datasets. (c) The group-wise averages of the results by 

our method and the templates for the nine RSN networks in all HCP Q1 tfMRI 
datasets. For the group-wise average results and templates, only the most 

informative slice, which is overlaid on the MNI152 template image, is shown 

as the spatial map of the specific RSN. 

B. Learned Group-wise Consistent Data-driven Functional 

Networks  

With our method, we could simultaneously discover intrinsic 

brain networks in 𝐷𝑙. Limited by current knowledge, we only 

take well-established RSN templates [74] as examples. Since 

these networks are learned in an unsupervised way individually, 

it is hard to group-wisely interpret brain activities from  𝐷𝑙 . 

Therefore, we examined the similarity between the dictionary 

atom's spatial patterns and the well-established RSN templates 

in the literature [74]. Specifically, we defined the similarity as 

the spatial overlap rate which is characterized in Eq. (6). To 

discover the well-established RSN networks in [74], we went 

through all of the decomposed dictionary atoms in 𝐷𝑙  across all 

of the HCP Q1 tfMRI datasets and quantitatively and visually 

compared the dictionary atom's spatial patterns with the well-

established RSN templates and identified nine consistent RSNs 

in all of the HCP Q1 tfMRI datasets. Figs.4a shows the 

reconstructed default mode network (DMN) of ten randomly 

selected subjects across seven tfMRI datasets and Figs.4b 

shows the reconstructed frontal network of ten randomly 

selected subjects across seven tfMRI datasets. It is evident that 

these RSNs are quite consistent and similar to the templates 

across all subjects and tfMRI datasets. In addition, we evaluated 

the group-wise average of all detected RSNs across all of the 

HCP Q1 subjects, as shown in Fig4.c. The quantitative 

measurement of mean spatial overlap rate of nine group-wise 

averaged RSNs detected via our method with RSN templates is 

as high as 0.84 as detailed in Supplemental Table5. 

Supplemental Table6 shows the spatial overlap rates of nine 

RSNs detected via our method across all HCP Q1 release 

subjects.  From these results, we can see that the group-wise 

average of these RSNs are quite similar with the well-

established RSN templates [74] across all the HCP Q1 tfMRI 

datasets. This result further demonstrated that our method is 

capable of simultaneously inferring other concurrent 

meaningful networks like RSNs that might interact with the 

model-driven networks, which is a major advantage of this 

framework. 

C. Parameters in Supervised Dictionary Learning 

Two crucial parameters in our proposed method as well as in 

the standard dictionary learning procedure are the dictionary 

size k and the sparsity level constraint λ. In the dictionary 

learning field, it is still an open question to optimize these two 

parameters. Therefore, in this work, these parameters are set 

experientially. In order to evaluate the effects of different 

parameter settings on our final results, different combinations 

of parameters were explored to examine the reproducibility and 

stability of our method. Specifically, we applied the same 

supervised dictionary learning pipeline on multiple randomly 

selected subjects (one used here as an example) with 

combinations of different parameters in motor tfMRI dataset. In 

order to separately determine the influence of the parameter size 

k and the sparsity level constraint λ, we first fixed the dictionary 

size as 400 and we alternate the regularization parameter λ from 
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0.05 to 2.05. The derived model-driven networks are shown in 

Supplemental Fig.1a and the derived resting state networks 

from the data-driven part (DMN and FRONTAL networks used 

here as examples) are shown in Supplemental Fig.1c. It is 

evident that both the model-driven networks and data-driven 

networks are not sensitive to the parameter of regularization 

parameter λ in a range of parameters and the detected brain 

networks are stable and robust. Meanwhile, in another 

experiment, the regularization parameter λ is fixed and size k 

alternates from 300 to 1000. The derived model-driven 

networks are also shown in Supplemental Fig.1b and the 

derived DMN and frontal networks are shown in Supplemental 

Fig.1d. From Supplemental Fig.1, we can clearly see that 

although the parameter alternation will cause slight spatial 

variation for the derived model-driven and data-driven 

networks, the overall patterns are consistent and stable in a large 

range of parameter settings. Thus, these results indicate that our 

method is stable and reproducible in simultaneously 

reconstructing meaningful model-driven and data-driven 

networks. 

In the current stage, there is no golden criterion for parameter 

selection and we have to set these parameters experimentally. 

Note that, learning a meaningful and over-complete dictionary 

𝐷ϵℝ𝑡×𝑚  should satisfy m>t, m<<n [25], which means the 

lower boundary of the dictionary size should be t (the number 

of fMRI time series points). However, the dictionary size 

should not be too big in order to avoid redundant information 

and the spatial pattern to be too sparse. Based on our 

observation, the dictionary size satisfying t< k (dictionary size) 

<2t usually gives good result [55]. For instance, in our 

experiments, there are 284 fMRI time series points in motor 

task and the dictionary size k<600 gives good result as shown 

in Supplemental Fig.1b and Supplemental Fig.1d. The 

parameter λ will also influence the sparsity and scale of 

components regions. We usually set it no higher than 1 to 

achieve good reconstruction networks which exhibit 

meaningful spatial distributions. 

D. Comparison with Conventional Dictionary Learning 

Method 

We also conducted conventional dictionary learning methods 

[55] on these datasets as control experiments. In order to 

eliminate the influence of parameter settings, we adopted the 

same parameters as supervised dictionary learning. Since 

conventional dictionary learning is a purely data-driven method 

and the network components are learned individually, there is 

no correspondence between multiple subjects. Therefore, we 

adopted the sorting and matching method in [55] to characterize 

the task-related and intrinsic (take resting state networks as 

examples) brain networks. Specifically, we examined the 

similarity between the dictionary atom's spatial distributions 

and the network templates (including the corresponding GLM 

network templates and the well-established RSN templates 

[74]) and identified the atom with the largest similarity as the 

corresponding network component. Similarly, we defined the 

similarity as the spatial overlap rate which is characterized in 

Eq. (6). With conventional dictionary learning method, we also 

identified the same number of task-related brain networks and 

resting state brain networks. Supplemental Fig.2 (2) shows the 

reconstructed task-related networks in motor task via our 

method and conventional dictionary learning method in one 

randomly selected subject in motor task dataset. From this 

figure, we can see that the brain networks detected via our 

supervised dictionary learning method show slightly more 

overlap with GLM activation map than control experiments. 

The detailed quantitative measurement of spatial overlap rate 

between the dictionary atoms and templates are shown in 

Supplemental Tables 7-10. Supplemental Table 7 shows the 

spatial overlap rates between group-wise averaged task-related 

dictionary atoms and the group-wise GLM activation maps and 

Supplemental Table 8 shows the spatial overlap rates of task-

related dictionary components and GLM activation maps in 

individual data sets, represented as mean ± std. Similarly, 

Supplemental Table 9 shows the spatial overlap rates between 

the group-average dictionary components and the RSN 

templates and Supplemental Table 10 shows the spatial overlap 

results in individual datasets. Supplemental Fig.3 shows the 

group-wise averaged task-related and resting state brain 

networks reconstructed in control experiments. 

From both spatial and quantitative results, we can see that 

task-related components reconstructed by our method have 

shown higher spatial overlap rates with GLM activation maps 

in both group-averaged results and individual results than 

control experiments. Results also show that the RSN networks 

detected by our method illustrate slightly higher spatial overlap 

rates than control experiments. The reason may lies in that with 

fixed dictionary atoms in the dictionary learning procedure, the 

algorithm could avoid the components converging to local 

minimum thus it may improve the reconstruction performance 

of both model-driven networks and intrinsic networks.   

E. Comparison with ICA Method 

We further compared our results with well-established 

independent component analysis (ICA) method [75] of whole-

brain fMRI signals. Since ICA is also a purely data-driven 

method and there is no correspondence among multiple 

subjects, we adopted the similar strategy in section III.D to 

characterize the task-related and RSN brain networks. We went 

through all of the independent components and labeled the 

component which shows the largest spatial overlap rates with 

templates as the corresponding network component. For 

comparison purpose, Supplemental Fig.2 (4) shows the 

identified task-related components via ICA method in motor 

task dataset of the same subject. It is clear to see that the task-

related network components detected via ICA method are quite 

different with GLM activation maps and other methods, and it 

seems ICA method failed to characterize different task-related 

network components in motor task dataset of this subject. We 

further compared the group-wise averaged task-related 

networks across all subjects with the group-wise GLM 

activation maps in Supplemental Fig.4a and Supplemental 

Fig.4b. It seems that ICA method is able to characterize task-

related networks in some simple task with fewer stimuli like 

emotion, gambling, language, relational and social task dataset. 
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However, it poses difficulty in detecting task-related in some 

complex task data like motor and working memory task datasets 

which have more stimuli. For comparison purpose, the detailed 

quantitative measurement of spatial overlap rate between the 

independent components and templates are shown in 

Supplemental Table 11-12. From these results, we can see that 

our supervised dictionary learning method shows great 

superiority in detecting task-related brain networks in tfMRI 

datasets. The reason may lie in that our supervised dictionary 

method takes the advantage of task paradigm information in the 

learning procedure and improved the performance of detecting 

task-related brain networks. 

Supplemental Fig.4c shows the characterized group-wise 

averaged RSN networks via ICA method across all seven HCP 

task datasets. Similar with our method, ICA method also 

characterized 9 consistent resting state brain networks across all 

the HCP task fMRI datasets. Supplemental Table13 and 

Supplemental Table14 illustrate the quantitative overlap results 

between the ICA components and RSN templates. From both 

spatial patterns and quantitatively results, we can see that our 

supervised dictionary learning method showed similar ability in 

detecting intrinsic brain networks as ICA method. 

F. Supervised Dictionary Learning Method with Only Fixed 

Atoms 

We also conducted experiments of supervised dictionary 

learning method with only fixed atoms (we call them Dctest 

experiments) on HCP tfMRI datasets to examine the influence 

of the data-driven part dictionary in our method. Specifically, 

in each subject’s tfMRI dataset, the predefined model-driven 

dictionary atoms (the constant part  𝐃c in supervised dictionary 

learning procedure) are fixed as dictionary and we utilized it to 

learn the coefficient matrix. Supplemental Fig.2 (3) shows the 

identified task-related components via Dctest method in motor 

task dataset of the same subject. We also characterized the 

group-wise task-related networks in Supplemental Fig.5. From 

these figures, we can see that the task-related networks 

reconstructed by Dctest method are quite similar to GLM 

activation maps. The quantitative spatial overlap measurements 

are shown in Supplemental Table 15 and Supplemental Table 

16. 

After comparing these results with our method, we can see 

that the augment of data-driven part dictionary in our 

supervised dictionary learning method only results in little 

negative influence on the detection of task-related brain 

networks but it brings in the ability to detect intrinsic brain 

networks simultaneously. 

IV. DISCUSSION AND CONCLUSION 

We have proposed a hybrid model-driven and data-driven 

algorithm to explore the task-related and intrinsic brain 

networks in HCP Q1 task fMRI datasets. The proposed method 

has several advantages. First, compared with traditional GLM 

approaches and Dctest method, our method could 

simultaneously estimate the model-driven and data-driven 

components, which demonstrates the existence of intrinsic 

brain networks in task fMRI datasets as pointed in [12,55]. 

Detailed experimental results of reconstructed model-driven 

networks (Fig. 2 and Fig. 3) and intrinsic brain networks (such 

as resting state networks in Fig. 4) have supported our 

conclusion. In addition, the sparse representation and dictionary 

learning based method coincides with the sparsity principle of 

the neural response thus it is more feasible to perform task fMRI 

data analysis. Thirdly, compared with conventional dictionary 

learning methods [54, 55] and ICA methods [75], it is 

straightforward to establish the correspondences of the inferred 

task-related networks across individuals for the predefined 

dictionary atoms based on stimulus curves intrinsically offer the 

match. What’s more, compared with purely data-driven 

methods like ICA and conventional dictionary learning, with 

the fixed dictionary atoms in the dictionary learning procedure, 

the algorithm could avoid the components converge to local 

minimum thus it may further improve the reconstruction 

performance, especially the task-related network components 

as detailed in Section III.   

Notably, there are still some questions need to be further 

explored about our method in the future. For instance, 

parameters should be carefully selected for our novel approach, 

including the sparsity level constraint λ and the dictionary size 

k. Although, experiments results in Section III.C have 

demonstrated that our method is robust and effective among a 

range of parameter settings and a small portion of fixed atoms 

is working well, our ongoing work is trying to optimize these 

parameters in a theoretic or experimental framework. Limited 

by current knowledge, in this paper, we have focused on the 

characterization of well-known categories of dictionary atoms 

including the GLM-related and resting-state network 

components, as shown in Section III.A and III. B. It should be 

noted that there are many other potentially important and 

meaningful network components [73] to be examined and 

characterized in the future. Furthermore, although experiment 

results on HCP tfMRI datasets which is one of the most 

systematic and comprehensive mapping between connectome-

scale functional networks and tasks over a large population of 

subjects have demonstrated the robustness of our novel method, 

we should also adopt simulations as a validation tool in the 

future. However, the simulation should be carefully designed to 

mimic the brain activities. 

In this paper, we have focused on simultaneously estimating 

the model-driven networks and intrinsic brain networks using 

supervised dictionary learning in tfMRI data and the detailed 

experiments results in Section III have demonstrated the 

superiority of this newly developed method. However, the 

methods could be further enhanced and improved if the 

computation cost could be reduced. In the current stage, we 

aggregated the whole-brain signals into a big signal matrix from 

which to learn an over-complete dictionary basis. However, 

many voxels showed similar activity patterns which suggest 

that appropriate sampling method may boost our method. 

Besides, algorithms which effectively solve the ℓ1  norm 

regulation problem will further advance our method. For 

instance, Huang and his colleagues [75, 76] proposed a 

Composite Splitting Algorithm (CSA) to tackle composite 

regularization problems and achieved promising results. The 
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combination with these advanced algorithms might deserve a 

try in the future. What’s more, in our current experiments, we 

only put ℓ1regularization to the coefficient matrix which may 

neglect the temporal property and thus limit the method’s 

ability. Caballero and his colleagues [78] introduced temporal 

gradient sparsity into sparse representation model and greatly 

improved reconstruction performance. This suggests that 

combing temporal sparsity into our method may be another 

future direction to explore. 

In summary, we have presented a novel supervised dictionary 

learning method for brain activity detection. By predefining 

task stimulus curves as the constant part of the learned over-

complete dictionary, our method is capable of accurately 

detecting task-related functional networks. Meanwhile, the 

data-driven learning part of the dictionary atoms can 

sufficiently account for those intrinsic brain networks that do 

not necessarily follow the task stimulus curves  like the resting 

state networks. In summary, our proposed approach takes both 

of the advantages of model-driven methods and data-driven 

methods, and can effectively infer concurrent and 

heterogeneous functional networks for systematic assessments 

of functional activities in tfMRI data. Motivated by our exiting 

results, we believe it will be invaluable to apply hybrid data-

driven fMRI analysis method in other future HCP release 

datasets, as well as from other task fMRI datasets, and further 

assess possible alterations of intrinsic brain components and 

interactions in brain disorders such as Alzheimier’s disease and 

Schizophrenia.  
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