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Sparsity Constrained fMRI Decoding of Visual 

Saliency in Naturalistic Video Streams 

Abstract 

Naturalistic stimuli such as video watching have been increasingly used in recent functional magnetic 

resonance imaging (fMRI) encoding and decoding studies since they can provide real, complex and dynamic 

information that the human brain has to process in everyday life. In this paper, we propose a 

sparsity-constrained fMRI decoding model to explore whether bottom-up visual saliency in continuous and 

naturalistic video streams can be effectively decoded by brain activities recorded by fMRI, and to examine 

whether sparsity constraints can improve the performance of visual saliency decoding model. Specifically, 

we use a biologically-plausible computational model to quantify the visual saliency in the video streams used 

as stimuli, and adopt a sparse representation scheme to learn the atomic fMRI signal dictionaries that are 

representative of the patterns of whole-brain fMRI signals. Sparse representation also serves as a unified 

scheme that links the learned atomic dictionary with the quantified video saliency. Our experimental results 

demonstrate that the temporal visual saliency information in naturalistic video stream can be well decoded 

and the sparse constraints can improve the performance of fMRI decoding models, compared with 

conventional independent component analysis (ICA). 

Index terms: fMRI encoding, visual saliency, naturalistic stimuli, sparsity constraints. 
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I. INTRODUCTION 

In recent years, functional brain mapping using functional magnetic resonance imaging (fMRI) under 

naturalistic stimuli such as video watching (e.g., [1-5]) and music listening (e.g., [6-9]) has received 

increasing attention. It has been argued that the neuronal responses evoked by naturalistic stimuli are 

stronger than those at rest or in controlled laboratory conditions using repeated artificial stimuli [10, 11]. 

More importantly, the complex and dynamic stimuli are likely to engage not only more distinct activation in 

a wide range of functionally specialized areas [1, 12], but also a broader set of inter-regional functional 

connections [13].  

 

Compared with conventional fMRI paradigms, there is no straight forward correspondence between the 

naturalistic stimuli and any specific cognitive functions of the human brain [3]. This makes it difficult to use 

hypothesis-based analysis methods (e.g., general linear model, GLM) that involve fitting fMRI signals with 

predictors representing specific experimental conditions or processes. In the literature, researchers have 

proposed two schools of methods to address this challenge. The first group includes data-driven methods 

such as Independent Component Analysis (ICA) [1, 13, 14] and Inter-Subject Correlation (ISC) analysis [2, 

11, 15]. ICA aims at a blind separation of independent sources [16-18]. It is based on the intrinsic structure 

of the input data, and does not need any “a priori” specifications of the external stimuli. ISC is based on the 

assumption that the blood oxygen level dependent (BOLD) responses of different subjects to the same video 

stimuli are similar [15]. In general, these data-driven methods are predominant in current naturalistic stimuli 

fMRI analysis. However, one of the limitations of current data-driven studies is the lack of quantitative 

correlation between measured brain responses and external stimuli, which would largely limit the power of 

fMRI in exploring the functional brain activities during natural viewing conditions. 



 

 

 

The second group of methods tried to quantitatively model the input predictors in external stimuli either 

by participants’ rating [14] or employing biologically-plausible computational models [3, 19, 20]. For 

instance, in the study in [14], the intensity of the predictors related to color, faces, language and human body 

were quantitatively ranked by the participants into no percept (1), moderate (2), medium (3) and intense 

percept (4) for in a movie clip, and followed by a standard GLM-based analysis. In the work in [3], the 

authors used biologically-plausible visual saliency [21, 22] and auditory saliency computational models [23] 

to extract quantitative predictors associated with color, intensity, orientation, motion in video, as well as 

intensity, frequency contrast, temporal contrast and orientation in audio. Those studies demonstrate the 

promising opportunities of integrating computational video and audio analysis models to advance naturalistic 

stimuli fMRI based brain studies.  

 

In parallel, multivariate approaches such as multi-voxel pattern analysis (MVPA) has become increasingly 

popular in linking external stimuli and brain responses [24]. MVPA typically employs pattern classification 

techniques to decode the cognitive variables from multi-voxel patterns of activity to characterize how 

cognitive states are represented in the brain, and the structure of the underlying neural codes with increased 

sensitivity [25]. However, the vast fMRI data poses a key challenge of dimension reduction (feature selection 

or voxel selection) in MVPA, which is an essential preliminary step to mine the fMRI data effectively 

[25-27]. Despite the successful application of ICA in fMRI feature extraction, growing interests have been 

directed to sparsity constrained approaches (e.g. [28-33]). It has been recognized that sparse population 

coding of a set of neurons is more effective than independent exploration, that is, a sparse set of neurons 

encode specific concepts rather than responding to the input stimuli independently [34]. At the same time, 



 

 

significant amount of research efforts from the machine learning and pattern recognition fields have been 

devoted to sparse representations of signals and patterns (e.g. [35-39]). Sparse representation aims at learning 

an atomic dictionary representing the basis functions contained in the data, and seeking the sparsest linear 

combination of the basis functions to reconstruct the data [39]. Compared to methods based on orthonormal 

transforms (e.g., Fourier) or direct time domain processing (e.g., wavelet) with predefined and fixed basis, 

sparse representation explores the intrinsic distribution of the data and pursuits a set of representative 

samples. Thus, it usually offers better performance for efficient signal modeling [36], and there have been 

several studies using sparse representation for fMRI analysis [31, 40-43]. 

 

In this paper, we present a sparsity constrained fMRI decoding of visual saliency in naturalistic video 

streams to explore whether bottom-up visual saliency in continuous and naturalistic video streams can be 

effectively decoded by brain activities recorded by fMRI, and to examine whether sparsity constraints can 

improve the performance of visual saliency decoding model. Similar to the study in[3], we use the 

biologically-plausible computational visual saliency model [44] to quantitatively measure the video saliency 

curves to capture the temporal information in naturalistic video streams. Afterwards, we adopt a sparse 

representation algorithm [38] to learn a set of basis BOLD signal patterns (a BOLD code-book) from the 

fMRI data acquired when the participants watched the video clips. Then, the computationally derived video 

saliency curves are reconstructed using the learned code-book under the same sparse representation scheme. 

At last, we evaluate our approach by comparing it with an ICA-based method.  

 

The novelties of our study are twofold. First, we propose to use sparse representation and dictionary 

learning algorithm to naturally decompose an fMRI signal into a data-driven discovered basis functions that 



 

 

are representative of the patterns of whole-brain fMRI signals. Second, we use the learned atomic fMRI 

dictionary as a unified scheme to link whole-brain fMRI patterns with temporal saliency information 

extracted from video stimuli using a computational model. In the following sections, a series of experiments 

will be designed and conducted to demonstrate the effectiveness of these novel methodologies.  

 

II. MATERIALS  

A. System Overview 

The overview of our study is illustrated in Fig.1. In the first step (panel (a)), the video saliency curves of 

the video streams are measured via a biological-plausible computational video saliency model proposed in 

[44]. In the second step (panel (b)), those video clips were used as naturalistic stimuli and presented to the 

participants, and fMRI data were acquired. After preprocessing, the sparse representation algorithm proposed 

in [38] was applied to learn an atomic dictionary for each fMRI data set (acquired when a specific subject 

watched a single video clip). In the dictionary, each atom corresponds to a representative fMRI signal 

pattern. In addition, each atom corresponds to a spatial map (see Fig.4 for examples), which describes the 

contribution of the atom when the trained code book is used to reconstruct whole-brain fMRI signals. In the 

last step (panel (c)), the trained atomic dictionary is used to reconstruct the saliency curves derived from 

video clips under a sparsity constrain [38]. Group-wise analysis is finally conducted to infer the consistent 

functional subdivisions for video saliency curve reconstruction. 

[Fig. 1 here] 

B. Video Stimuli 

The TRECVID database is a widely used benchmark video database in multimedia analysis field. In 

TRECVID 2005, the Large Scale Concept Ontology for Multimedia (LSCOM) group selected a light scale 

http://en.wikipedia.org/wiki/Large_Scale_Concept_Ontology_for_Multimedia


 

 

concept ontology including politics, business, science/technology, sports, entertainment, weather report, and 

commercial/advertisement to describe the high-level semantic of the video samples [45]. In this study, we 

randomly selected 32 video shots which are in the semantic categories of sports and weather report (16 for 

sports, 16 for weather report). Those video shots were then composed into 4 clips in an interleaved semantic 

label fashion. Each of the video clips is about 10 minutes long.  

 

C. Data Acquisition and Pre-processing 

Four healthy university students from The University of Georgia were recruited in this study under IRB 

approval. All the participants were right-handed and with normal sight. No participant reported head 

trauma, claustrophobia, was treatment-seeking or any implants or non-removable metal contraindicated in 

MRI.  

The video clips were presented to the 4 subjects for fMRI brain imaging. The video clips were presented to 

the subjects using a MRI-compatible audio-video delivery system when the subjects were lying in the scanner. 

Brain images were acquired using a GE 3T Signa MRI system (GE Healthcare, Milwaukee, WI) with an 

8-channel head coil at the Bioimaging Research Center of The University of Georgia. The fMRI scanning 

parameters are as follows: 30 axial slices, matrix size 64×64, voxel size = 3.44×3.44mm in plane, 4mm slice 

thickness without space between slices, 220mm
2
 FOV, TR=1.5s, TE=25ms, ASSET=2. The number of the 

volumes of the fMRI data is 413. In total, 16 fMRI data (four subjects were watching 4 video clips) were 

acquired. The strict synchronization between media viewing and fMRI scan is achieved via the E-prime 

software. 

 



 

 

The pre-processing of fMRI data included skull removal, motion correction, spatial smoothing with an 

8mm full-width at half-maximum (FWHM) Gaussian kernel, temporal prewhitening with autoregressive 

model AR(1), slice time correction, and global drift removal. The fMRI time-series were further high-pass 

filtered at 128s [3]. 

 

III. VIDEO SALIENCY MODELING 

The bottom-up visual saliency maps [21, 22, 44] for naturalistic images/videos is one of the most 

successful biological-plausible computational models in the computer vision field. In general, visual saliency 

detection aims at quantitatively predicting attended locations in an image by mimicking the visual selection 

mechanism of the human vision system [21]. Visual saliency models have yielded fruitful productions in 

computer vision applications, and also provided promising means for human brain studies [3, 19, 20].  

 

A typical image visual saliency model may be organized into three stages including extracting local 

multi-channel discontinuities feature vectors such as intensity, color and orientation at locations over the 

image plane; building an “activation map” (or maps) using the extracted feature vectors; and normalizing and 

combining the activation map(s) from multi-channel into a single master saliency map [44]. Beside those 

static spatial features recruited in image visual saliency models, a video saliency model usually adopts 

dynamic features such as motion and flicker to capture the temporal information contained in the video 

stream [44]. In addition, the surprise model [46] for quantifying the visual saliency of continuous video 

stream is typically adopted to estimate the true saliency map. 

 



 

 

In this study, we use the graph-based visual saliency (GBVS) model proposed in [44] to build the visual 

saliency curve. The GBVS model exploits the computational power, topological structure and parallel nature 

of graph algorithms to facilitate the efficient saliency computation. The related software is available at: 

http://www.klab.caltech.edu/~harel/share/gbvs.php. In the descriptor extraction stage, the static image 

descriptors and the dynamic video descriptors employed in GBVS are similar to the classic visual saliency 

models [21, 22]. The static image descriptors include intensity feature (1 channel of on/off contrast); color 

feature (2 channels corresponding to red/green and blue/yellow contrast); orientation feature (4 channels 

corresponding to contrasts at [0°, 45°, 90° and 135°]). The dynamic video descriptors include motion feature 

(4 channels corresponding to contrasts at [0°, 45°, 90° and 135°]) and flicker feature (1 channel of on/off 

contrast). In the stage of activation map building, GBVS defines Markov chains over various descriptor 

maps, and treats the equilibrium distribution over map locations as activation or saliency values [44]. To 

integrate with the surprise model [46], the activation map of the previous frame is used as prior information 

when calculating the activation map for the current frame [44]. In the normalization stage, GBVS model 

defines another Markov chain to concentrate mass on activation maps. It has been reported that this 

normalization strategy experimentally behaves favorably compared to the standard approaches such as 

“DoG” (Difference of Gaussian) and “NL” nonlinear interactions [44].  

 

For an input video clip, the GBVS model provides the master saliency maps for each frame as the final 

output. Following the method that converted the high-dimensional master saliency maps into regressors for 

the SPM design matrix described in [3], we construct the video saliency curve for the video clip. Briefly, we 

calculate the mean value of the master saliency map over the vertical and horizontal spatial dimensions for 

each frame. This step results in a high-dimensional video saliency curve, whose dimension is the same as the 

http://www.klab.caltech.edu/~harel/share/gbvs.php


 

 

number of frames in the video clip. Afterwards, the high-dimensional video saliency curve is down-sampled 

by averaging over each fMRI repetition time (1.5s), resulting in a video saliency curve which is with the 

same temporal dimension (the number of volumes) of the acquired fMRI data. At last, the video saliency 

curve is convolved with the canonical hemodynamic response function (HRF) implemented in SPM [3, 47]. 

In general, the video saliency curve quantitatively describes the participants’ attention directed to the video 

clip during passive free watching.  

IV. SPARSE ENCODING OF VIDEO SALIENCY VIA SPARSE CODING 

In this section, we first introduce basic sparse representation theory, and then the learning of the atomic 

dictionary for a set of fMRI signals. Then the spatial patterns associated with the atoms in the learned 

dictionary are examined. Afterwards, we introduce the reconstruction of video saliency curve using the 

learned fMRI atomic dictionary. At last, the strategy for group-wise statistic analysis is detailed.  

 

A. Sparse Representation Theory and Dictionary Learning 

The primary goal of classical sparse representation and dictionary learning algorithms is to model data 

vectors as sparse linear combinations of basis elements [48, 49]. Following the notations in [38, 48], the 

sparse representation and dictionary learning can be formulated as: 
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where  nxxX ,...,1  in 
nmR  is a finite training set of signals with n samples and each sample is 

represented by an m-dimensional feature vector. Usually n is large whereas m is relatively small. 
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nkR are the 

decomposition coefficients. In general, nk  . In Eq. (1), the first term counts for the signal reconstruction 



 

 

accuracy while the second term counts for the sparsity of the reconstruction coefficients. λ is a regularization 

parameter to achieve the balance between the signal reconstruction accuracy and the sparsity of the 

coefficient. Eq. (1) can be rewritten as a matrix factorization problem with a sparsity penalty: 
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B. FMRI Atomic Dictionary Learning  

The basic assumption in sparse representation based whole-brain fMRI analysis is that each raw BOLD 

signal is composed of multiple components, and sparse representation and dictionary learning can naturally 

decompose an fMRI signal into a data-driven, discovered basis functions that are representative of the 

patterns of whole-brain fMRI signals. Given the superiority of sparse representation in complex signal 

modeling compared with predefined and fixed basis [36], it was expected that sparse representation would 

yield improved mining of the representative BOLD signal patterns in naturalistic stimuli fMRI data. 

 

The sparsity constrained whole-brain fMRI signal analysis is illustrated in Fig. 2. After preprocessing, the 

fMRI signals for all the brain tissue voxels in a specific fMRI data (acquired when a specific subject watched 

a specific video clip) are aggregated to form a full data matrix X. Each column in X is the fMRI signal vector 

for a single voxel. Thus, X is in the dimension of t×n, where t is the length (metric in volume) of the fMRI 

signal and n is the total number of voxels. The atomic dictionary D and the associated coefficient matrix α 

are estimated according to Eq. (2) using an online dictionary learning algorithm [38]. In brief, the online 



 

 

dictionary learning algorithm is based on stochastic approximations. It processes one sample at a time (or a 

mini-batch), and uses second-order information of the cost function to efficiently solve the dictionary 

learning by sequentially minimizing a quadratic local surrogate of the expected cost. The dictionary learning 

algorithm consists of a sequence of iterative updates of D. In each iteration, it draws one training sample at 

a time, and alternates classical sparse coding steps for computing the decomposition αt of Xt over the 

dictionary Dt-1 obtained at the previous iteration, with dictionary update steps where the new dictionary Dt is 

computed by minimizing over the cost function. The sparse coding step is solved by a homotopy method [50]. 

The updating of the dictionary is based on block-coordinate descent with warm restarts, which is parameter 

free and does not require any learning rate tuning. It is effective to use the value of Dt-1 as a warm restart for 

computing Dt after a few iterations, and a single iteration is sufficient to achieve convergence of the 

dictionary update step [38]. 

After dictionary learning, the fMRI signal matrix X can be represented by a learned dictionary matrix D 

and a sparse coefficient matrix α. 

[Fig. 2 here] 

 

Each atom in the dictionary corresponds to a representative fMRI signal pattern. Each dimension of the 

coefficient vector associated with a specific atom (the corresponding row in α) indicates the contribution of 

this atom to the reconstruction of the fMRI signal for a specific voxel in the brain image. With the assistance 

of the preserved voxel index, we project each coefficient vector in the coefficient matrix back to the fMRI 

image space, which results in a coefficient map associated with that atom. The spatial pattern has the same 

spatial dimension as that of the input fMRI. We use a classic t-statistic analysis as same as that used in the 

classic GLM based analysis, which converts the coefficient map of an atom to a T-statistic map, to assess the 



 

 

significance level of the contribution of the atom in fMRI signal sparse reconstruction. For the ease of group 

analysis, the T-statistic maps are normalized to the standard MNI brain template using the nonlinear 

registration implemented in FSL with the help of the acquired T1 structural image.  

 

C. Sparse Encoding of Video Saliency Curves 

fMRI decoding models are typically used to explore the relationship between functional brain responses 

and the external stimuli. The introduction of sparsity constraints can significantly decrease the complexity of 

the decoding models and increase the interpretability of the results [32, 36]. In our study, the learned 

atomic fMRI dictionary contains the representative brain activity (BOLD signal) patterns with 

largely reduced dimensions of the original fMRI data, and the corresponding spatial maps reveal 

the functional subdivision where the brain activities represented by the atoms originate. We borrow 

the hypothesis in brain decoding studies that if the combination of the brain activities from some 

brain regions can reconstruct the profile of the external stimuli, then those brain regions may play 

critical roles in the perception of the external stimuli. Thus, by reconstructing the video saliency 

curve using the learned fMRI dictionary under sparsity constraint and inspecting into the 

contribution of the atoms in video saliency curve reconstruction, it is feasible to explore the 

functional subdivisions engaged in visual saliency perception during natural viewing conditions. In 

this context, sparse representation serves as a bridge that directly links the representative brain 

activities with the video saliency curve. In this study, we use the learned atomic fMRI dictionary to 

reconstruct the video saliency curve under a sparse representation scheme, which is the same as that in fMRI 

signal reconstruction in the dictionary learning stage formulated in Eq. (2). The Pearson correlation 

coefficient between the original video saliency curve and the reconstructed video saliency curve is used as a 



 

 

metric to evaluate the performance of sparse representation in our study. Under the sparse representation 

scheme, a few atoms have nonzero coefficients in the estimated coefficient vector. This subset of atoms is 

considered to have contribution to the reconstruction of the video saliency curves. Similarly, the T-value 

associated with the atoms in the video curve reconstruction is calculated using the classic T-statistic analysis. 

 

D. Group-wise Statistical Analysis 

In our study, the fMRI atomic dictionary training and the video saliency curve reconstruction are 

performed for each individual fMRI data separately, which is similar with that in an ICA-based study for 

functional brain mapping under movie watching. Thus, the correspondences of the atoms across different 

fMRI atomic dictionaries are still missing. To solve this problem, we use the representative 20 functional 

brain networks achieved in a resting state fMRI study [51] as the structural spatial guidance. Specifically, the 

spatial overlap rates between the T-statistic map associated with a given atom in a dictionary and the 20 

representative resting state networks (RSNs) are calculated. The atom is then labeled by the RSN that has the 

largest overlap rate. With the established correspondences between the atoms across different dictionaries, 

the significance or contribution of the atoms in video saliency reconstruction are assessed by using a 

conventional group-wise statistical analysis.  

V. RESULTS 

A. Atomic fMRI Dictionary Learning 

The preset parameters in sparse representation include the size of the dictionary (number of atoms in the 

dictionary, m), and the balance between sparsity and the residual error of fMRI signal reconstruction (λ). In 

our experiments, they are experimentally set as follows: m=200, λ=0.01. 

 



 

 

To evaluate the performance of sparse representation of the fMRI signals, we calculate the residual errors, 

as well as the Pearson correlation coefficients between the original fMRI signals and the reconstructed 

signals. The Pearson correlation coefficients and the residual error for one randomly selected fMRI data are 

shown in Fig. 3(a) and Fig. 3(b), respectively. It is seen that the reconstructed fMRI signals are well 

correlated with the original fMRI signals, and the residual errors are relatively small. Further inspection of 

the distribution of the Pearson correlation coefficient shows that 98.45% of the voxels are with the 

correlation over 0.8. We can see that the fMRI signals for the voxels in gray matter can be better 

reconstructed compared with those in white matter and cerebrospinal fluid (CSF). In Fig. 3(c), we show the 

fMRI signal reconstruction for two exemplar voxels A and B. The location of voxel A and B is referred to Fig. 

3(a). Voxel A is in the primary visual cortex and voxel B is in white matter. In Fig. 3(c), the brown curves are 

the original fMRI signals and the blue curves are the reconstructed fMRI signals. As can be seen in Fig. 3(c), 

the fMRI signals can be almost fully reconstructed for voxel A, and relatively well reconstructed for voxel B. 

[Fig. 3 here] 

In comparison, the Pearson correlation coefficient map and the residual error map for the ICA-based 

decomposition of the same fMRI data are shown in Fig. 4(a) and Fig. 4(b), respectively. We can see from Fig. 

3 and Fig. 4 that the fMRI signal reconstruction using sparse representation is much better when compared 

with ICA. More specifically, none of the voxels is with the correlation over 0.8. In comparison, 98.45% of 

the voxels are with the correlation over 0.8 in sparse representation based fMRI signal reconstruction. 

[Fig. 4 here] 

In Fig. 5, we show some exemplar spatial maps and the corresponding basis of brain responses of the 

atoms in a dictionary. The spatial maps include the primary auditory cortex (Fig. 5(a)), the primary visual 

cortex (Fig. 5(b)), the visual motion perception cortex (Fig. 5(c)), the salience network (Fig. 5(d)), the 



 

 

posterior default mode network (Fig. 5(e)),the somatosensory cortex (Fig. 5(f)), the motor cortex (Fig. 5(g)), 

and the cerebellum (Fig. 5(h)), the putamen areas (Fig. 5(i)), and the ventricle (Fig. 5(j)). Quantitatively, we 

calculated the percentage of the voxels in the spatial maps shown in Fig. 5 falling into the representative 

RSN templates in [51]. For example, 89.64% of the voxels in Fig. 5(a) fall into the primary auditory cortex, 

94.18% of the voxels in Fig. 5(b) belong to the primary visual cortex, 95.15% of the voxels in Fig. 5(c) fall 

into the visual motion perception cortex, 95.12% of the voxels in Fig. 5(d) fall into the executive control 

network, 88.63% of the voxels in Fig. 5(e) fall into the default mode network, and 91.44% of the voxels in 

Fig. 5(f) fall into the somatosensory cortex. 

[Fig. 5 here] 

In the ICA-based naturalistic stimuli fMRI study [1], the authors proposed two metrics for component 

selection in single session fMRI analysis, including (i) a plausible distribution of the hottest voxels, i.e., how 

well the hottest voxels are spatially clustered, or spatial aggregativity; (ii) bilaterality. By visual inspection, 

the exemplar spatial maps shown in Fig. 5, which are among the most representative RSNs, have good 

performance regarding the abovementioned two metrics.  

 

B. Spare Encoding of Video Saliency Curve  

Fig. 6 shows an example of the original video saliency curve (blue) and the reconstructed video saliency 

curve (brown) in a single fMRI data via sparse representation. The Pearson correlation coefficient between 

the reconstructed video saliency curve and the original video saliency curve is 0.6837, indicating that the 

video saliency curve derived from the naturalistic video stimulus by computation video saliency model can 

be well reconstructed from the learned atomic fMRI dictionary.  

[Fig. 6 here] 



 

 

More results on video saliency curve reconstruction are reported in Fig. 7 and Table 1. For each video, we 

reconstruct the video saliency curve by the learned atomic dictionary of the 4 subjects independently. The 

Pearson correlation coefficients between the reconstructed video saliency curves and the original video 

saliency curves are calculated. In comparison, the performance of video saliency curve reconstruction using 

ICA components is also reported. For the purpose of fair comparison, the video curve reconstruction using 

ICA components is regulated by the same sparsity constrain as that in sparse representation. From the 

reconstruction performance we can conclude: (i) the 4 video saliency curves can be relatively well 

reconstructed from the learned atomic fMRI dictionary under the sparse representation scheme. The highest 

and the lowest Pearson correlation between the reconstructed and the original video saliency curve is 0.7509 

and 0.5208, respectively. Considering the noises in video saliency curve modeling, the performance of video 

saliency curve reconstruction via sparse representation is remarkable. (ii) The reconstruction performance of 

sparse representation is significantly higher than that of ICA. We performed a one-tail t-test on the 

concatenated correlation vectors. The p-value is 6.7×10
-6

. (iii) Despite the discrepancies of performance in 

video saliency curve reconstruction between sparse representation based and ICA-based methods, the trends 

of the variation across videos are similar. For example, both sparse representation and ICA achieve the best 

video saliency curve reconstruction for the second video sample, while the worst performance for the third 

video sample. 

[Fig. 7 here] 

 [Table 1 here] 

C. Impact of Dictionary Size in Dictionary Learning 

Parameter selection in applications of the sparse representation algorithm is still an open 

problem. No method has been proposed to find a set of theoretically optimal parameters. 



 

 

Experimental and empirical parameter selections are typically used in existing studies. In our study, 

the selection of dictionary size is the trade-off between model complexity, fMRI signal 

reconstruction and video saliency curve reconstruction performance. Dictionary with small size 

may fail to cover the brain responses captured by the fMRI data and consequently is unable to 

accurately recover the original fMRI signals. However, increasing the dictionary size would 

substantially increase the computational cost. For fair comparisons, in our previous experiments we 

set the number of independent components (nIC) in ICA as same as the size of the dictionary in 

sparse representation. 

 

We performed two experiments on a randomly selected fMRI data (acquired when the first subject 

were watching the first video clip) to demonstrate the impact of the dictionary size in sparse 

representation and nIC in ICA. In the experiments, we varied the dictionary size/nIC from 50 to 400 

with the step length of 50. In addition, a few methods such as minimum description length (MDL) 

[52]have been employed for automatic selection of nIC for fMRI analysis. In the experiments, we 

also tested the automatically estimated nIC, which is 37, for ICA-based method and sparse 

representation-based method.  

 

In the first experiment, we show how the performance of fMRI signal reconstruction changes with 

different dictionary sizes and different nICs in ICA. The plots of average Pearson correlation 

coefficient between the reconstructed fMRI signals and the original fMRI signals, and the average 

residual error in fMRI signal reconstruction against the dictionary size and nIC in Fig. 8(a) and Fig. 

8(b), respectively. The average Pearson correlation coefficient increases while the average residual 



 

 

error decreases with the increasing of dictionary size in the sparse representation-based method. In 

comparison, both the average Pearson correlation coefficient and the average residual error are 

about to be stable when nIC is beyond 150 in the ICA-based method.  

[Fig. 8 here.] 

In the second experiment, we show how the performance of video saliency curve reconstruction 

changes with different dictionary sizes and different nICs in ICA. The performance of video saliency 

curve reconstruction is measured by the Pearson correlation coefficients between the reconstructed 

video saliency curve and the original video saliency curve. The experimental results are 

summarized in Fig. 9. The results show that the performance of video curve reconstruction 

increases with the dictionary size and nIC. However, when the dictionary size or nIC is beyond 200, 

the improvement is non-substantial.  

[Fig. 9 here.] 

From Fig. 1 and Fig. 2 we can see that increasing the dictionary size can improve the 

performance of fMRI signal reconstruction, however, its contribution to the improvement of video 

saliency curve decoding is limited. It is also seen that sparse representation-based method 

outperforms ICA-based method in both fMRI signal reconstruction and video saliency curve 

reconstruction experiments. Considering the consequent computational cost in sparse 

representation using larger dictionary size, we use 200 as dictionary size in our study.   

 

D. Consistent Brain Subdivisions in Visual Saliency Encoding 

In Fig. 10, we show all the spatial maps, coefficients and T-scores in the video saliency curve 

reconstruction for one single fMRI data. The order of the spatial maps in Fig. 10(a) is according to the 



 

 

descending order of the T-scores shown in Fig. 10(c). Those spatial maps cover several representative RSNs, 

for example, the primary visual cortex (#1, #5, #7, #15, #19), the motion perception visual cortex (#8 and #9), 

the auditory cortex (#2), the executive control network (#13), the somatosensory cortex (#20), the dorsal 

attention network (#22), the frontoparietal network (#12), white matter area (#29) and the cerebellum (#21). 

In comparison, the spatial maps, coefficients and T-scores of the video saliency curve reconstruction using 

ICA-based method for the same fMRI data are shown in Fig. 11. Several well-known cortical areas can also 

be seen in Fig. 11(a), for example, the primary visual cortex (#23), the primary auditory cortex (#4), part of 

the default mode network (#1), and white matter area (#30).  

[Fig. 10 here] 

[Fig. 11 here] 

To evaluate the inter-subject consistency of the atomic spatial patterns involved in the video saliency curve 

reconstruction, we calculated the probability of the 20 representative RSNs [51] over the set of 16 fMRI data. 

Fig. 12 shows the results for sparse representation (Fig. 12(a)) and ICA (Fig. 12(b)) based methods. Ten 

RSNs show high inter-subject consistency (above 80%) in sparse representation based video saliency curve 

reconstruction. In contrast, the inter-subject consistency in ICA-based methods is relatively low, partly 

indicating the superiority of sparse representation in natural stimuli fMRI analysis compared with ICA-based 

method. Those atoms with inter-subject consistency below 50% are discarded in our further studies.  

[Fig. 12 here] 

To assess the significance of the atoms with inter-subject consistency of over 50%, we show the T-scores 

and groupwise T-scores of those atoms in the video saliency curve reconstruction in Fig. 13. In Fig. 13(a), 

the blue line shows the mean and standard deviation of the T-scores, and the brown line shows the 

group-wise T-scores for sparse representation based method. The sorted groupwise T-scores and 



 

 

corresponding RSNs indices are shown in Fig. 13(b). The results for ICA-based video saliency curve 

reconstruction are shown in Fig. 13(c) and Fig. 13(d). The 3D volume rendering of the average spatial maps 

for those atoms is shown in Fig. 14 for sparse representation based method and in Fig. 15 for ICA-based 

method. The order of the spatial maps is according to the significance indicated by the sorted group-wise 

T-scores shown in Fig .13(b) and Fig. 13(d), respectively. 

[Fig. 13 here] 

[Fig. 14 here] 

The spatial maps shown in Fig. 14 cover a number of representative brain networks. Specifically, there are 

three visual related spatial maps included the dorsal V1 area (ranked No. 1), the ventral V1 (ranked No. 3) 

and the MT/MST areas (ranked No. 4) in both hemispheres. The involvement of V1 cortex in bottom-up 

visual saliency perception has been well documented in the literature. For example, Zhang et al. 

demonstrated that the neural activities in V1 contribute to the creation of a bottom-up visual saliency map by 

a study jointly using event related potential (ERP) and fMRI [53]. The role of MT/MST in visual saliency 

perception has not been well documented yet. However, it is reasonable to observe the contribution of 

MT/MST in visual saliency reconstruction in our experiments since motion and flicker information plays an 

important role in the computational video saliency model that generates the video saliency curves [44]. The 

spatial map ranked No. 2 is known as the frontoparietal network, which covers the bilateral intraparietal 

sulcus (IPS) and frontal eye fields (FEF). The frontoparietal network has been widely reported in the 

literature to be involved in targeting eye movements and allocating covert attention. Specifically, anterior IPS 

(aIPS) is sensitive to bottom-up attentional influences driven by stimulus salience [54], while FEF plays an 

important role in the control of eye movements [55, 56]. In addition, the neuronal processing of visual 

saliency is believed to comprise two stages: (i) the graded representation of saliency and (ii) the 



 

 

winner-take-all representation of the maximally salient position in the visual field [21, 57]. In an fMRI-based 

study in which static images were used as naturalistic stimuli and the computational visual saliency model 

[21, 22] was adopted to model the visual saliency in the stimuli, Bogler et al. demonstrated that the first stage 

correlates with the early visual cortex and the posterior IPS (pIPS), and the second stage is encoded in 

anterior IPS (aIPS) and FEFs [20]. In coincidence, in our study, the spatial maps related to the visual cortex 

(ranked No. 1, 4 and 6) and the IPS-FEF network (ranked No. 2) are among the most important ones in video 

saliency curve reconstruction.  

 

In addition, Fig. 13 indicates that some other brain regions may contribute to the visual saliency 

perception, including the fifth-eighth spatial maps. The fifth spatial map is strongly lateralized and is known 

as the right-sided frontal-parietal network (or right executive network) [51]. The sixth spatial map 

corresponds to the somatosensory cortex. The seventh spatial map includes the primary and association 

auditory cortices. The eighth spatial map covers part of the anterior cingulate cortex (ACC) and the middle 

frontal gyrus and is known as the salience network. How those subdivisions participate in the saliency 

perception under dynamic and complex naturalistic video stimuli is still largely unknown, and thoroughly 

addressing this problem is out of the scope of this paper. Essentially, our experimental results may provide 

new clues for further exploration of the functional mechanism of saliency perception when the human are 

exposed to dynamic and naturalistic scenes. For example, previous study has demonstrated that early 

somatosensory cortex carries content-specific information that discriminates familiar visual object categories 

[58], and object-based visual attention might attribute to the involvement of the somatosensory cortex in our 

experimental results. In addition, one of the important functions of the salience network is related to emotion. 

We speculate that the involvement of the salience network in video attention may attribute to the emotion’s 



 

 

regulation on visual attention, which has been shown by growing evidence in the literature [59].  

 

Fig. 14 also shows that several other brain regions (networks) have limited contribution to video saliency 

curve reconstruction, including the tenth and the twelfth spatial maps (whose functions have not been well 

defined yet), the eleventh spatial map (is known as the left-sided fronto-parietal network), the thirteenth 

spatial map (corresponds to the posterior DMN), and the fourteenth spatial map (covers part of the 

cerebellum). It has been reported in [5] that the DMN can be robustly identified when exposing participants 

to a continuous segment of an audiovisual movie, however, its activities are with low intra-subject and 

inter-subject correlations, and hence are believed to be dissociated from the external stimulation.  

[Fig. 15 here] 

In the ICA-based method, the spatial maps shown in Fig. 15 also cover some representative brain regions 

(networks), including the ventral V1 (ranked No. 1), the dorsal V1 (ranked No. 2), the right-sided 

front-parietal network (ranked No. 3), the frontoparietal network (ranked No. 4), the auditory cortex (ranked 

No. 5), the somatosensory cortex (ranked No. 6), the posterior DMN (ranked No. 7), the cerebellum (ranked 

No. 10), the salience network (ranked No. 11), the left-sided front-parietal network (ranked No. 12). It is seen 

that the order of the spatial maps in ICA-based maps is similar to that in sparse representation based method 

to some extent. For example, both of the results in Fig. 14 and Fig. 15 showed that the primary visual cortex 

and the frontoparietal network have the most significant contribution to video saliency reconstruction. 

However, the spatial aggregativity and bilaterality of those spatial maps shown in Fig. 15 are not as good as 

those shown in Fig. 14 by visual inspection.  

 



 

 

VI. DISCUSSION AND CONCLUSION 

We proposed a novel sparsity-constrained fMRI decoding model to explore whether bottom-up visual 

saliency in continuous and naturalistic video streams can be effectively decoded by brain activities recorded 

by fMRI, and to examine whether sparsity constraints can improve the performance of visual saliency 

decoding model. The sparsity constraints in our study are two folds. First, we used a sparse representation 

scheme to learn representative and atomic BOLD signal patterns (code-book) for the whole-brain fMRI data 

with the purpose of dimension reduction. Second, the video saliency curves derived from video stream via 

computational video saliency model were reconstructed under sparsity constraints. Our experimental results 

have demonstrated that: 1) the whole-brain fMRI signals can be more accurately represented by the atomic 

dictionary learned by sparse representation when compared with the widely used ICA-based decomposition; 

2) the spatial maps of the atoms resulted from dictionary learning are more reasonable when compared with 

those of the independent components in ICA-based analysis in terms of spatial aggregativity and bilaterality; 

3) the video saliency curves of complex and naturalistic scenes derived via computational video saliency 

model can be relatively well reconstructed using the learned atomic dictionary of whole-brain fMRI signals, 

and the performance of video saliency curve reconstruction using sparse representation outperforms that in 

ICA-based analysis.  

 

Due to the relatively small number of training samples (4 participants, 4 video clips), cross-validation of 

video saliency curve reconstruction has not been performed in our study. Instead, we firstly identified the 

atoms with high spatial consistency in video saliency curve reconstruction across sessions of fMRI, and then 

assessed the significance of their contribution to video saliency curve reconstruction. The atoms with 

significant contribution to video saliency curve reconstruction included the visual cortex (including ventral 



 

 

and dorsal V1, as well as V4), the frontoparietal network which covers the bilateral IPS and FEF. The results 

are in line with conventional visual saliency studies using fMRI. In addition, our experimental results 

indicate that the right-sided frontal-parietal network, the somatosensory cortex, the primary and association 

auditory cortices and the salience network may contribute to visual saliency perception when participants 

were exposed to complex and naturalistic scenes. Thorough explanation of how those subdivisions 

participated in the saliency perception under dynamic and complex naturalistic scenes is out of the scope of 

this paper. However, our experimental results may provide new clues for further visual saliency studies using 

functional brain imaging. Nevertheless, the relatively small number of participants and video samples is one 

of the limitations in our study. The significance level of the reported experimental results might be 

degenerated by the relatively small number of training samples. A larger number of participants and video 

samples, as well as cross-validations would be beneficial for more robust and reliable explorations of video 

saliency perception.  

 

In the atomic fMRI dictionary learning, the BOLD signal of each voxel was treated as a spatially 

independent sample. In other words, the spatial information of the voxels has not been taken into account. In 

machine learning studies, some structured sparsity constraints have been successfully developed. Similar to 

the probabilistic ICA [60], it is expected that effective integration of spatial information can potentially 

improve the atomic fMRI dictionary learning in the future. In addition, due to the high dimension of a typical 

fMRI data, the computational cost is usually high in fMRI dictionary learning using sparse representation 

algorithm. In the literature, a few efficient sparse models have been proposed, e.g. [63, 64]. In the future, we 

plan to use these solutions to accelerate dictionary learning. 

 



 

 

 

In addition, the setting of the parameters in sparse representation is still an open question in the literature. 

Similar to ICA-based analysis, the size of the dictionary determines the complexity of the sparse 

representation model and the integration of the spatial maps in our study. Larger dictionary size will increase 

the complexity of the model and decrease the integration of the spatial maps. Parameter λ is used to achieve 

the balance between the signal reconstruction accuracy and the complexity of the model. One of the 

limitations in our experiments is that those parameters were set experimentally and empirically. In the future, 

it is desired to use parameter optimization algorithms such as the optimization of the sparsity level based on 

minimum description length (MDL) [40, 52] and learning the optimal value of λ by a Bayesian approach [61], 

as well as performing reproducibility studies with regard to parameter settings. 

 

In our study, the spatial maps of the learned atoms were anatomically labeled by referring to the 

representative ICA resting state templates [51]. Theoretically, it is practical to identify the correspondences 

of the atoms across different fMRI sessions when the dictionary learning was performed for each fMRI 

session individually. In addition, group sparse representation analysis of multi-session fMRI data may 

provide alternative solutions. For example, like in group-ICA approaches, the BOLD signals from 

multi-session fMRI data can be temporally concatenated [51], or can be analyzed similarly to the tensor-ICA 

algorithms [62]. 

 

Finally, we could like to conclude by predicting that sparsity constrained fMRI decoding models would 

play more and more important roles in elucidating the interactions between the brain’s functional responses 

and naturalistic stimuli such as video and audio streams. Eventually, quantitative representations of such 



 

 

interactions based on sparse coding would significantly advance neuroscientific understanding of the brain 

and its comprehension of the real world, as well as benefitting the multimedia content analysis field [65].  
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Fig. 1.  The overview of our study. (a) A biological-plausible computational video saliency algorithm [44] 

is adopted to model the video saliency curve for the input naturalistic video stimuli. (b) A sparse 

representation scheme [38] is adopted to learn the atomic fMRI dictionary for the fMRI data which was 

acquired when the subject were watching the video stimuli. (c) The learned atomic fMRI dictionary is used 

to reconstruct the video saliency curve. Group-wise analysis is conducted to infer the consistent functional 

subdivisions for video saliency curve reconstruction.  

 

Fig. 2:  Illustration of sparse representation based whole-brain fMRI signals analysis. X is the fMRI signal 

matrix, in which each column is the fMRI signal for a single voxel. D is the atomic fMRI dictionary, in 

which each column (an atom) in the dictionary corresponds to a representative fMRI signal pattern. α is the 

coefficient matrix, in which each row is the coefficient vector of the corresponding atom in the 

reconstruction of the whole-brain fMRI signals. 



 

 

 

Fig. 3:  The illustration of the performance of fMRI signal reconstruction using sparse representation. (a) 

The Pearson correlation coefficients between the reconstructed fMRI signals and the original signals. (b) The 

residual error in fMRI signal reconstruction. (c) Two examples for fMRI signal reconstruction. The locations 

of voxel A and B are referred to (a).  

 

Fig. 4:  The illustration of the performance of fMRI signal decomposition via ICA. (a) The Pearson 

correlation coefficients between the reconstructed fMRI signals and the original signals. (b) The residual 

error in fMRI signal decomposition. 



 

 

 

Fig. 5:  Exemplar spatial maps and the corresponding time courses of the atoms in fMRI signal dictionary. 

(a) The primary auditory cortex. (b) The primary visual cortex. (c) The visual motion perception cortex. (d) 

The executive control network. (e) The posterior default mode network. (f) The somatosensory cortex. (g) 

The dorsal attention. (h) The cerebellum. (i) The putamen areas. (j) The ventricle. 

 

Fig. 6:  An example of video saliency curve reconstruction via fMRI atomic dictionary. The Pearson 

correlation coefficient between the reconstructed video saliency curve and the original video saliency curve 

is 0.6387. 



 

 

 

Fig. 7:  Performance of video saliency curve reconstruction via sparse representation ((a)) and ICA ((b)). 

 

(a) 

 

(b) 

Fig. 8: The impact of dictionary size in sparse representation and number of independent 

components in ICA on fMRI signal reconstruction. (a) The average Perason coefficient coefficients 

between reconstructed fMRI signals and origianal fMRI signals. (b) The average residual error in 

fMRI signal reconstruction.  



 

 

 

Fig. 9: The impact of dictionary size in sparse representation and number of independent 

components in ICA on video saliency curve reconstruction. The performance of video saliency 

curve reconstruction is measured by the Pearson correlation coefficients between the reconstructed 

video saliency curve and the original video saliency curve. 

 

 

Fig. 10:  Exemplar spatial maps ((a)), coefficients ((b)) and T-scores ((c)) for video curve reconstruction via 

the learned atomic fMRI dictionary. The order of the spatial maps in (a) is according to descend order of the 

T-scores showed in (c). In (a), ‘#-’ represents the index of the spatial map. Each row contains 6 spatial maps. 



 

 

 

Fig. 11:  Exemplar spatial maps, coefficients and T-scores for video curve reconstruction via the ICA 

components. The order of the spatial maps in (a) is according to descending order of the T-scores showed in 

(c). In (a), ‘#-’ represents the index of the spatial map. Each row contains 6 spatial maps. 

 

 

Fig. 12:  The probability of the atoms’ (a) and components’ (b) presence in the total 16 fMRI data. 



 

 

 

Fig. 13:  (a) The T-scores and groupwise T-scores of the atoms in video saliency reconstructions using 

sparse representation. (b) The descending order of the absolute group-wise T-scores in (a). (c) The T-scores 

and group-wise T-scores of the components in video saliency reconstructions using ICA. (d) The descending 

order of the absolute group-wise T-scores in (c). 

 



 

 

 

Fig. 14:  The average spatial maps of the atoms in video curve reconstruction using sparse representation. 

The order of the spatial maps is according to the descending order of the absolute group-wise T-scores 

shown in Fig. 11(b). 

 

Fig. 15:  The average spatial maps of the atoms in video curve reconstruction using ICA. The order of the 

spatial maps is according to the descending order of the absolute group-wise T-scores shown in Fig. 11(d). 



 

 

Table 1: Performance of video saliency curve reconstruction. SR denotes sparse representation. 

Correlation 
Video1 Video2 Video3 Video4 

SR ICA SR ICA SR ICA SR ICA 

Sbj1 0.6387 0.4983 0.6744 0.5137 0.5208 0.4550 0.6506 0.4847 

Sbj2 0.6276 0.5490 0.7396 0.5961 0.5444 0.5131 0.6081 0.4546 

Sbj3 0.6076 0.5560 0.7509 0.5691 0.5511 0.4688 0.5669 0.5286 

Sbj4 0.5938 0.5005 0.7376 0.5226 0.5536 0.4528 0.5537 0.4652 

Mean 0.6169 0.5260 0.7256 0.5504 0.5425 0.4724 0.5948 0.4833 

Std. 0.0174 0.0267 0.0300 0.0338 0.0130 0.0243 0.0379 0.0283 

 

 


