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ABSTRACT 

There have been several recent studies that used sparse representation for fMRI signal analysis and 

activation detection based on the assumption that each voxel’s fMRI signal is linearly composed of sparse 

components. Previous studies have employed sparse coding to model functional networks in various 

modalities and scales. These prior contributions inspired the exploration of whether/how sparse 

representation can be used to identify functional networks in a voxel-wise way and on the whole brain 

scale. This paper presents a novel, alternative methodology of identifying multiple functional networks 

via sparse representation of whole-brain task-based fMRI signals. Our basic idea is that all fMRI signals 

within the whole brain of one subject are aggregated into a big data matrix, which is then factorized into 

an over-complete dictionary basis matrix and a reference weight matrix via an effective online dictionary 

learning algorithm. Our extensive experimental results have shown that this novel methodology can 

uncover multiple functional networks that can be well characterized and interpreted in spatial, temporal 
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and frequency domains based on current brain science knowledge. Importantly, these well-characterized 

functional network components are quite reproducible in different brains. In general, our methods offer a 

novel, effective and unified solution to multiple fMRI data analysis tasks including activation detection, 

de-activation detection, and functional network identification.    

 

Keywords: Task-based fMRI, activation, intrinsic networks, connectivity.   

 

1. INTRODUCTION 

Task-based fMRI has been widely used to identify brain regions that are functionally involved in specific 

task performance, and has significantly advanced our understanding of functional localizations within the 

brain (Logothetis, 2008; Friston, 2009). In the human brain mapping community, a variety of fMRI time 

series analysis methods have been developed for activation modeling and detection, such as correlation 

analysis (Bandettini et al., 1993), general linear model (GLM) (Friston et al., 1994; Worsley et al., 1997), 

principal component analysis (PCA) (Andersen et al., 1999), Markov random field (MRF) models 

(Descombes et al., 1998), mixture models (Hartvig and Jensen, 2000), independent component analysis 

(ICA) (McKeown et al., 1998), wavelet algorithms (Bullmore et al., 2003; Shimizu et al., 2004), 

autoregressive spatial models (Woolrich et al., 2001), Bayesian approaches (Bowman et al., 2008), and 

empirical mean curve decomposition (Deng et al., 2012). Among all of these computational methods, the 

GLM (Friston et al., 1994; Worsley et al., 1997) is one of the most widely used methods due to its 

effectiveness, simplicity, robustness and wide availability.    

  

Recently, inspired by the successes of using sparse representation for signal and pattern analysis in the 

machine learning and pattern recognition fields (Wright et al., 2010), there have been several studies  that 

used sparse representation for fMRI signal analysis and activation detection (e.g., Li et al., 2009; Lee et 

al., 2011; Li et al., 2012; Oikonomou et al., 2012; Lee et al., 2013; Abolghasemi et al., 2013; Lv et al., 
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2013) based on the assumption that the components of each voxel’s fMRI signal are sparse and the neural 

integration of those components is linear. Actually, the human brain function intrinsically involves 

multiple complex processes with population codes of neuronal activities (Olshausen 1996; Olshausen and 

Field, 2004; Quiroga et al., 2008). In the brain science field, a variety of research studies have supported 

that when determining neuronal activity, sparse population coding of a set of neurons seems more 

effective than independent exploration (Daubechies et al., 2009). That is, a sparse set of neurons encode 

specific concepts rather than responding to the input independently (Daubechies et al., 2009). Therefore, 

it is natural and well-justified to explore sparse representations to describe fMRI signals of the brain. In 

parallel, significant amount of research efforts from the machine learning and pattern recognition fields 

has been recently devoted to sparse representations of signals and patterns (Donoho 2006; Huang and 

Aviyente, 2006; Wright et al., 2008; Wright et al., 2010; Mairal et al., 2010; Yang et al., 2011), and 

remarkable achievements have been made for both compact high-fidelity representation of the signals and 

effective extraction of meaningful patterns (Wright et al., 2010). However, despite recent successes of 

using sparse representation for fMRI signal analysis and activation detection in the human brain mapping 

field (e.g., Li et al., 2009; Lee et al., 2011; Li et al., 2012; Oikonomou et al., 2012; Lee et al., 2013; 

Abolghasemi et al., 2013; Lv et al., 2013), it has been rarely explored whether/how sparse representation 

of fMRI signals can be utilized to infer functional networks within the whole brain at the voxel scale.     

 

To bridge the abovementioned gap, in this paper, we present a novel, alternative methodology which 

employs sparse representation of whole-brain fMRI signals for functional networks identification in task-

based fMRI data. The basic idea here is that we aggregate all of the dozens of thousands of task-based 

fMRI signals within the whole brain from one subject into a big data matrix, and factorize it by an over-

complete dictionary basis matrix and a reference weight matrix via an effective online dictionary learning 

algorithm (Mairal et al., 2010). Our rationale is that during task performance, there could be multiple, 

e.g., dozens or even hundreds of, functionally active networks that contribute to the fMRI blood oxygen 

level dependent (BOLD) signals of the whole brain. The main objectives of this work are to explore the 
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following three questions: 1) what could these atomic functional networks be; 2) what spatial, temporal 

and frequency characteristics could those functional network components exhibit; and 3) how do they 

contribute to the compositions of dozens of thousands of fMRI signals within the whole brain. Given the 

proven remarkable capability of sparse representation in uncovering meaningful patterns from large 

amount of data (Wright et al., 2010), we hypothesize that sparse representation of whole-brain fMRI 

signals via dictionary learning can simultaneously address the abovementioned three questions. In 

particular, we hypothesize that the identified functional network components can be further characterized 

and interpreted by existing brain science knowledge, as well as by existing structural and functional brain 

atlases. To test the above hypotheses, as an example, Fig. 1 illustrates our rationale and the computational 

methodology. In Fig. 1, three exemplar identified network components including the task related one 

(Faraco et al., 2011) (yellow), the anti-task related one (or de-activation, Archer et al., 2003; Tomasi et 

al., 2006) (blue), and the default mode network (DMN) (Raichle and Snyder, 2007) (red), as well as their 

overlapped areas including task + anti-task (pink), task + DMN (green), anti-task + DMN (cyan), and task 

+ anti-task + DMN (brown), are shown on the inflated cortical surface. It is noted that the visualization on 

original surface of Fig. 1 is shown in Supplemental Fig. 13(I). It is shown that these three network 

components exhibit spatially distinct but overlapping distribution patterns, illustrating that multiple 

functionally active networks simultaneously contribute to the fMRI BOLD signals of the whole brain and 

that the online dictionary learning method has the great promise to concurrently address the 

abovementioned three questions.                          
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Figure 1. Illustration of spatial distributions of three dictionary components of interest (COI) onto the 

inflated cortical surface. This illustration is based on a working memory task-based fMRI dataset (Faraco 

et al., 2011; Zhu et al., 2012). There are task-related component (yellow), anti-task related component 

(blue) and default mode network (DMN) component (red). (a-c) show different views of representing the 

spatial distribution patterns of these three network components. (d) demonstrates the color scheme of 

representing different components and their overlaps. For examples, the regions belonging to both the 

anti-task and DMN components are represented by cyan, and the green color represents the overlapped 

areas of the task and DMN components. 

 

In general, the major novelties and contributions of this paper are summarized in three aspects. First, in 

comparison with previous works of sparse representation of fMRI signals (Li et al., 2009; Lee et al., 

2011; Li et al., 2012; Oikonomou et al., 2012; Lee et al., 2013; Abolghasemi et al., 2013; Lv et al., 2013), 

our methodology systematically considers the whole-brain task-based fMRI signals with each subject, and 

aims to infer a comprehensive collection of functional networks. In other words, we employ a big-data 

strategy (Manyika et al., 2011) that include a large number of fMRI signals to uncover multiple 

functioning brain networks concurrently. Importantly, each fMRI signal is sparsely represented by a 
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linear combination of those functioning network components’ signals, which offers a novel, alternative 

window to examine the spatial compositions of meaningful functional brain networks. Second, we have 

developed an effective computational pipeline to quantitatively characterize those uncovered functional 

networks in spatial, temporal and frequency domains, which can be potentially used as functional network 

atlases for specific task performance or functional scenario in the future. This computational pipeline and 

its results will not only demonstrate the effectiveness of sparse representation of whole-brain fMRI 

signals and its neuroscience meaning, but also offer a novel approach to identifying and describing 

functions of the brain. Third, our methodology provides a novel, effective and unified framework for 

multiple tasks in traditional fMRI data analysis including activation detection, de-activation detection, and 

functional network identification. Essentially, the data-driven discovered functional network components 

via online dictionary learning algorithms correspond, to some extent, to different determining factors that 

have generated the fMRI BOLD signals. Although this paper focuses on the characterization and 

interpretation of activation, de-activation and default mode network components, quantitative 

characterization of many other network components in the dataset used in this paper and in other 

additional task-based fMRI datasets will likely contribute to deeper understanding of the brain’s structure 

and function in the future. 

 

2. MATERIALS AND METHODS 

2.1 Overview 

Fig. 2 summarizes the computational pipeline of identifying functional network components via sparse 

representation of whole-brain fMRI signals. First, the whole-brain fMRI signals are sparsely represented 

by using online dictionary learning and sparse coding methods, as illustrated by the 400 learned atomic 

dictionary components in Fig. 2a. That is, dozens of thousands of whole-brain fMRI signals can all be 

effectively and sparsely represented by linear combinations of these atomic dictionary components. 

Second, we propose a novel framework for temporal-frequency characteristics analysis of network 
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components to identify and select network components of interest (COI) within the learned dictionary. 

For instance, these COIs could be either correlated or anti-correlated with the task paradigm, and exhibit 

similar frequency domain patterns as the time series of task paradigm. Figs. 2b-2d show the temporal time 

series shapes and spatial distribution patterns of three selected COIs that correspond to task (Faraco et al., 

2011), anti-task (Archer et al., 2003; Tomasi et al., 2006) and DMN (Raichle and Snyder, 2007) network 

components, respectively, and their dictionary component indices are highlighted by the color circles in 

Fig. 2a. As mentioned in Section 1, this paper focuses on exploring these atomic COIs (considered as 

functional networks here) (Section 2.3), characterizing the spatial, temporal and frequency characteristics 

of these COIs (Section 2.4), and examining how these COIs contribute to the compositions of all of the 

fMRI signals within a whole brain (Section 3).       
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Figure 2. Overview of the computational pipeline of identifying functional brain networks via sparse 

representation of whole-brain fMRI signals. (a) An example of the learned sparse dictionary of 400 

functional components (indexed by the horizontal axis). The vertical axis stands for the occurrence 

frequency of each component in over 40,000 fMRI BOLD signals in a whole brain. The three dictionary 

components highlighted by yellow, blue and red circles correspond to different functional networks. They 

are: (b) task related component in which the response well follows the external block-based task 

paradigm, (c) anti-task related component in which the response well follows the inverse of external 

block-based task paradigm, and (d) DMN component. In each component (b-d), the corresponding signals 

(colored curves) accompanied with the task stimulus (white curve) are shown in the top panels. Their 

spatial distributions are also back-projected onto the volumetric images in the lower panel. Each voxel is 

color-coded by the reference weight used in the sparse representation. 

 

2.2 Dataset and Preprocessing 

Two different task-based fMRI datasets (block design) and one event-related fMRI data were used in this 

paper. The first dataset was used as the test bed data to develop and evaluate our sparse representation 

approaches in Sections 2 and 3. The second dataset was used in Section 3.5 for an independent 

reproducibility study.  For extensive evaluation, the third event-related fMRI data was employed. 

  

Dataset 1: In a working memory task-based fMRI experiment under IRB approval (Faraco et al., 2011; 

Zhu et al., 2012), fMRI images of 15 subjects were scanned on a 3T GE Signa scanner at the Bioimaging 

Research Center (BIRC) of The University of Georgia (UGA). Briefly, acquisition parameters are as 

follows:  64×64 matrix, 4mm slice thickness, 220mm FOV, 30 slices, TR=1.5s, TE=25ms, ASSET=2. 

Each participant performed a modified version of the operational span (OSPAN) task (3 block types: 

OSPAN, Arithmetic, and Baseline) (Faraco et al., 2011) while fMRI data was acquired. Preprocessing 

steps for the fMRI data are referred to Faraco et al., 2011 and Zhu et al., 2012.  



9 

 

 

Dataset 2: In the semantic decision making task (Zhu et al., 2013), the fMRI scan included 8 on (task) 

blocks (30 seconds) and 8 off (rest) blocks (15 seconds). During each on-block, ten participants were 

serially presented with ten pictures (each for 3 seconds), and they made an animacy decision regarding 

the image (i.e., living/nonliving). Button responses and response times were recorded using a 

magnetically shielded four-button box in the participant’s hand. The task-baseline contrast was used to 

generate the semantic decision making activation map. FMRI scans were acquired on the 3T GE Signa 

scanner at UGA BIRC using a T2*-weighted single shot echo planar imaging (EPI) sequence aligned to 

the AC-PC line, with TE = 25 ms, TR = 1500 ms, 90° RF pulse, 30 interleaved slices, acquisition matrix 

= 64x64, spacing = 0 mm, slice thickness = 4 mm, FOV = 240 x 240 mm, and ASSET factor = 2. 

Preprocessing steps of the fMRI data are referred to Zhu et al., 2013.   

 

Dataset 3: Twenty-six right-handed adults (mean age: 28.1±8.5 years) participated in the flanker event-

related task fMRI study in New York University (NYU). During the fMRI scan, participants were 

requested to response to a series of slow-paced Eriksen flanker trials (inter-trial interval (ITI) varied from 

8s to 14s, 12s on average). In each trial, the direction the central arrow of five (e.g. < < > > >) was 

responded by pushing buttons.  FMRI images were acquired on a research-dedicated Siemens Allegra 3.0 

T scanner in NYU Center for Brain Imaging. The acquisition parameters are as follow: TR=2000 ms; 

TE=30 ms; flip angle=80, 40 slices, matrix=64×64; FOV=192 mm; acquisition voxel size=3×3×4 mm. 

Preprocessing includes slice timing correction, motion correction, and spatial smoothing. More details 

about task design, data acquisition and preprocessing of this open fMRI data are referred to Kelly et al., 

2008, Mennes et al., 2010 and Mennes et al., 2011. 

 

2.3 Sparse Representation of Whole-Brain FMRI Signals 
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Our computational framework of sparse representation of whole-brain fMRI signals is summarized in Fig. 

3. Specifically, first, for each single subject’s brain, we extract task-based fMRI signals on all voxels 

within the whole brain. Then, after normalization to zero mean and standard deviation of 1, the fMRI 

signals are arranged into a big signal data matrix Sϵℝt×n (Fig. 3a), where n columns are fMRI signals 

from n voxels and t is the fMRI volume number (or time points). By using a publicly available effective 

online dictionary learning and sparse coding method (Mairal et al., 2010), each fMRI signal vector in S is 

modeled as a linear combination of atoms of a learned basis dictionary D (Figs. 3b-3c), i.e., si = D × αi 

and S=D×α, where α is the coefficient weight matrix for sparse representation and each column αi is the 

corresponding reference weight vector for si. Finally, we identify components of interests (COIs), namely 

functional network components in this work, by performing temporal and frequency analysis of atomic 

signal components (Fig. 3b) in the learned dictionary D. At the same time, we map each row in the α 

matrix back to the brain volumes and examine their spatial distribution patterns, through which functional 

network components are characterized and modeled on brain volumes, as shown by the red and yellow 

areas in Fig. 3c. At the conceptual level, the sparse representation framework in Fig. 3 can effectively 

achieve both compact high-fidelity representation of the whole-brain fMRI signals (Fig. 3b) and effective 

extraction of meaningful patterns (Fig. 3c) (Donoho 2006; Huang and Aviyente, 2006; Wright et al., 

2008; Wright et al., 2010; Mairal et al., 2010; Yang et al., 2011). In comparison with previous works of 

sparse representation of fMRI signals (e.g., Li et al., 2009; Lee et al., 2011; Li et al., 2012; Oikonomou et 

al., 2012; Lee et al., 2013; Abolghasemi et al., 2013), the major novelty here is that our framework 

holistically considers the whole-brain task-based fMRI signals by using a big-data strategy (Manyika et 

al., 2011) and aims to infer a comprehensive collection of functional networks concurrently, based on 

which their spatial, temporal and frequency characteristics are further quantitatively described and 

modeled.     
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Figure 3. The computational pipeline of sparse representation of whole-brain fMRI signals using an 

online dictionary learning approach. (a) The whole-brain fMRI signals are aggregated into a big data 

matrix, in which each row represents the whole-brain fMRI BOLD data in one time point and each 

column stands for the time series of one single voxel. (b) Illustration of the learned atomic dictionary, 

each of which represents one functional network component. Three exemplar components of time series 

are shown in the bottom panels. (c) The decomposed reference weight matrices, each row of which 

measures the weight parameter of each component in the whole brain. That is, each row defines the 

contribution of one component to the composition of the fMRI signals.        

 

In our framework, we aim to learn a meaningful and over-complete dictionary Dϵℝt×m (m>t, m<<n) 

(Mairal et al., 2010) for the sparse representation of S. For the task-based fMRI signal set  S =



12 

 

[s1, s2, … sn]ϵℝt×n, the empirical cost function is summarized in Eq. (1) by considering the average loss 

of regression of n signals. 

fn(D) ≜
1

n
∑ ℓ(si, D) 

n

i=1

 (1) 

With the aim of sparse representation using D, the loss function is defined in Eq. (2) with a ℓ1 

regularization that yields to a sparse resolution of αi, and here λ is a regularization parameter to trade-off 

the regression residual and sparsity level. 

ℓ(𝑠𝑖, 𝐷) ≜ 𝑚𝑖𝑛
𝛼𝑖𝜖ℝ𝑚

1

2
||𝑠𝑖 − 𝐷𝛼𝑖||2

2 + 𝜆||𝛼𝑖||1 (2) 

As we mainly focus on the fluctuation shapes of basis fMRI BOLD activities and aim to prevent D from 

arbitrarily large values, the columns 𝑑1, 𝑑2, … … 𝑑𝑚 are constrained by Eq. (3). 

𝐶 ≜ {𝐷𝜖ℝ𝑡×𝑚   𝑠. 𝑡.   ⩝ 𝑗 = 1, … 𝑚, 𝑑𝑗
𝑇𝑑𝑗 ≤ 1} (3) 

𝑚𝑖𝑛
𝐷𝜖𝐶,𝛼𝜖ℝ𝑚×𝑛 

1

2
||𝑆 − 𝐷𝛼||𝐹

2 + 𝜆||𝛼||1,1  (4) 

In brief, the whole problem of dictionary learning can be rewritten as a matrix factorization problem in 

Eq. (4) (Lee et al., 2007), and we use the effective online dictionary learning methods in (Mairal et al., 

2010) to derive the atomic basis dictionary for sparse representation of whole-brain fMRI signals. Here, 

we employ the same assumption as previous studies (Li et al., 2009; Lee et al., 2011; Li et al., 2012; 

Oikonomou et al., 2012; Lee et al., 2013; Abolghasemi et al., 2013) that the components of each voxel’s 

fMRI signal are sparse and the neural integration of those components is linear.  

 

One common use of sparse representation of signals with limited quantity of atoms from a learned 

dictionary is to de-noise. For our fMRI data analysis application, with the sparse representation, the most 

relevant basis components of fMRI activities will be selected and linearly combined to represent the 

original fMRI signals. With the same regularization in Eq. (4), we perform sparse coding of the signal 

matrix using the fixed dictionary matrix D in order to learn an optimized α matrix for spare representation 
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as shown in Eq. (5).    

                 𝑚𝑖𝑛
𝛼𝑡𝜖ℝ𝑚

1

2
||𝑠𝑡 − 𝐷𝛼𝑡||2

2 + 𝜆||𝛼𝑡||1  

 

(5) 

Eventually, the fMRI signal matrix from a subject’s whole brain will be represented by a learned 

dictionary matrix and a sparse coefficient matrix (Fig. 3). Here, each column of the α matrix contains the 

sparse weights when interpreting each fMRI signal with the atomic basis signals in the dictionary. 

Meanwhile, each row of the α matrix stores the information of the voxel spatial distributions that have 

references to certain dictionary atoms. Note that in order to learn task-related and anti-task networks into 

separate networks and avoid anti-task networks from merging into task-related networks as negative 

coefficients, we constrained the α matrix positive in both dictionary learning and sparse representation. 

With these decomposed dictionary components and their reference weight parameters across the whole 

brain for each subject, our next major task is to characterize and interpret them within a neuroscience 

context. In particular, the sparse representation and dictionary learning of whole-brain fMRI signals (Fig. 

3) are performed for each individual brain separately and thus the spatial, temporal and frequency 

correspondences of those characterized dictionary components, or components of interests (COIs), across 

a group of subjects will be another major issue to investigate, as detailed in the next section. 

 

In our approach, the parameter 𝜆 not only regularizes the feature selection when reconstructing fMRI 

signals, but also determines the sparsity and scale of network regions. In other word, if the 𝜆 is too small, 

the network will be too coarse and involve much noise, while if 𝜆 is too large, the network will be too 

sparse. Currently, there is no golden criterion for selection of 𝜆. In our results, the parameter 𝜆 was 

experimentally determined to ensure that the reconstructed networks exhibit meaningful level of sparsity 

in terms of spatial distributions.  

 

2.4 Temporal-Frequency Analysis of Network Components 
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In section 2.3, we have obtained the network components by learning a dictionary from the whole-brain 

fMRI signals for each subject. As each network component has its own time series signal that serves as 

the basis for sparsely representing the whole-brain fMRI signals, a natural question arises: what are the 

neuroscience meanings of those hundreds of network components (Figs. 3b-3c)? That is, we need to 

characterize the structural and functional profiles of those atomic component signals to elucidate the 

neuroscience meanings of these network components, and potentially establish their correspondences 

across a group of subjects’ brains. It is clear that full understanding and quantitative characterization of all 

of such hundreds of dictionary network components are beyond our current scope and capability, thus in 

this paper, our research focus is on the several network components within the learned dictionary that are 

either correlated or anti-correlated with the task paradigm and exhibit similar frequency domain patterns 

as the frequency of task performance paradigm. Accordingly, we designed a temporal-frequency analysis 

framework to identify and select such basic components with more easily interpretable meanings, as 

shown in the pipeline in Fig. 4a.  
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Figure 4. (a) A computational pipeline of the temporal-frequency analysis of network components, which 

is composed of seven steps. In this framework, the input is the learned dictionary components (D in Fig. 

3b) and the output is the selected well-characterized components with their group-wise correspondence. 

More details of the seven steps are explained as follows. (b) Examples of time series signals of five 

exemplar network components that are visualized as blue curves, which correspond to the step 1 in the 

pipeline in (a). The task stimulus curve (yellow, the same as (f)) is overlaid on the component signal for 

visualization purpose. The x-axis (horizontal) is the temporal points (in volumes), and the y-axis (vertical) 

is the fMRI BOLD signal normalized to (-1, 1) for visualization. (c) The frequency spectrum of the five 

network components visualized as green curves, which correspond to the step 2 in (a). The x-axis is the 

frequency, and the y-axis is the corresponding power normalized to (0, 1). (d) The values of energy 
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concentration Ef, corresponding to the step 3 in (a); Correlation Ecorr corresponds to the step 4 in (a); The 

component score Φ  corresponds to the step 5 in (a) of each component. (e) Component selection result, 

where "ü" means the component is selected as COI by our algorithmic pipeline for further analysis in the 

next step, which correspond to the step 6 in (a). (f) The stimulus curve of the task paradigm of dataset 1, 

corresponding to the step 7 in (a). The x-axis is the temporal points (in volumes), and the y-axis is the 

alternation between task and base-line blocks. 

 

In the diagram in Fig. 4a, the "Network Components Signals" D is the t×m matrix from the last section as 

the model input, where m is the number of learned dictionary atoms (network components) and t is the 

length of the fMRI time series signal. Thus, the signal of the j-th network component is Dj. Another 

model input is the "Task Stimulus Paradigm" curve TS, which is a vector of length t based on the block-

based task design (Faraco et al., 2011; Zhu et al., 2012), as shown in Fig. 4f. For instance, for the working 

memory task, it can be calculated from the curve (Fig. 4f) that the frequency of a cycle between the task 

and the baseline is: 

1

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡𝑎𝑠𝑘+𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑟𝑒𝑠𝑡
∗

1

𝑇𝑅
=

1

(20+30)/2+20
∗

1

1.5
= 0.0148𝐻𝑧              (6) 

which is defined as the stimulus frequency Frstimulus. For other task paradigm (e.g., that in Section 3.5), the 

stimulus frequency can be calculated in a similar fashion, which is 1/(length of the full paradigm cycle). 

Then, for the j-th network component signal Dj, we can obtain its frequency spectrum FDj by using the 

fast Fourier transform on its signal, and calculate the energy concentration Ef,j of the stimulus curve 

frequency over all frequency ranges: 

𝐸𝑓,𝑗  = 𝐹𝐷𝐹𝑟𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠,𝑗/ ∑ 𝐹𝐷𝑖,𝑗

𝑖

 (7) 

where FDFrstimulus,j denotes the energy of the stimulus frequency in the spectrum of the j-th network 

component, and FDi,j denotes the energy of the i-th position in the spectrum of the j-th network 

component. Intuitively, a larger Ef,j suggests that this network component is more likely to be responsive 

(either positively or negatively) to the task stimulus and should be considered as the task related or anti-
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task related network. Also, we can obtain the Pearson correlation between the signal of each network 

component (Fig. 4b) with the stimulus curve (Fig. 4f), which is defined as Ecorr, j: 

𝐸𝑐𝑜𝑟𝑟,𝑗 = 𝑐𝑜𝑟𝑟(𝐷𝑗 , 𝑇𝑆) (8) 

Essentially, Ecorr, j measures the temporal similarity between the component’s time series and the stimulus 

curve which is convolved with hemodynamic response function (HRF). A larger value of Ecorr, j indicates 

better correspondence between the component and the stimulus. Notably, the widely used GLM model 

(Friston et al., 1994; Worsley et al., 1997) in the fMRI community uses a similar principle in detecting 

activated brain regions during a task. Also, the sign of Ecorr, j can tell whether the network component is 

positively or negatively correlated with the stimulus curve, which will be used to differentiate task related 

or anti-task related network components later.  

 

As mentioned in Section 2.1, at the current stage, our work focuses on the network components that are 

either correlated or anti-correlated with the task paradigm. Therefore, we designed a straightforward, yet 

effective approach to selecting the components of interests based on both Ef and Ecorr, and a component 

scoring function Φ(·) of the j-th network component is then defined as: 

𝛷(𝐷𝑗)
+

= 𝐸𝑓,𝑗
2 + 𝐸𝑐𝑜𝑟𝑟,𝑗

2, 𝑖𝑓 𝐸𝑐𝑜𝑟𝑟,𝑗 > 0  

𝛷(𝐷𝑗)
−

= 𝐸𝑓,𝑗
2 + 𝐸𝑐𝑜𝑟𝑟,𝑗

2, 𝑖𝑓 𝐸𝑐𝑜𝑟𝑟,𝑗 < 0 (9) 

Here, both Ef,j and Ecorr,j are within the range of (0, 1) and a larger value of Φ(·)
+
 or Φ(·)

-
 is desired to 

select the COIs. It should be noted that we defined the scoring function separately for correlated and anti-

correlated network components, and thus each component of the learned dictionary will be either in the 

set Φ(·)
+
 or in the set Φ(·)

-
. As the positively correlated components were found to have higher scores 

than anti-correlated components, defining them separately will enable us to select both types of 

components in a more flexible and reliable manner. A sample illustration of the distributions of 

components scores in two subjects is shown in Fig. 5.  
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Figure 5. Distribution of Ef,j (on the horizontal x-axis) and absolute value of Ecorr,j (on the vertical y-axis) 

of the task-related and anti-task components from two randomly selected subjects (subject #10 and #12). 

“Sub10+” indicates the components from subject #10 that are positively-correlated with the stimulus 

curve, while “Sub10-” indicates the components from subject 10 that are negatively-correlated with the 

stimulus curve. We examined these distributions in all of the 15 subjects and observed similar patterns.  

 

In Fig. 5, each icon is a network component, and the components residing in the top-right region (with 

both large Ef and Ecorr) are what we aim to select, since we are currently interested in those most 

responsive components to the stimulus curve. However, as shown in Fig. 5, the distribution of the scores 

across different types of components and across different subjects is highly variable. Thus, it is more 

reasonable to individually and adaptively select the best components from each type in each individual 

subject. Thus, in this work, we designed and applied a greedy iterative searching algorithm to best 

partition the whole components space into the "selected" and "unselected" groups. For each type (task 

related/anti-task related) of the components in each subject, we define the "selected" group starting from 

the component with the highest score Φ(·), e.g., the top right ones in Fig. 5. We then iterate through all 

components which are sorted by their scores, and at each step k, we add the new components into the 

"selected" group, thus forming two partitions [1...k] and [k+1...m] of the total network components. 

During the greedy iterative searching, as long as the following criterion is decreasing, the iteration will be 

continued: 
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𝐶([1…𝑘],[𝑘+1…𝑚]) =
1

𝑘
∑(𝐸𝑓,𝑗 − 𝐸𝑓,[1…𝑘]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )2

𝑘

𝑗=1

+
1

𝑚 − 𝑘
∑ (𝐸𝑓,𝑗 − 𝐸𝑓,[𝑘+1…𝑚]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)2

𝑚

𝑗=𝑘+1

− (𝐸𝑓,[1…𝑘]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝐸𝑓,[𝑘+1…𝑚]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)2 

(10) 

In other words, we aim to select the most suitable network components by minimizing the intra-group 

distance while maximizing the inter-group distance, where the groups are defined by partitioning the 

sorted components at k-th index.  

 

2.5 Spatial Pattern Analysis of Network Components 

The frequency and temporal characteristics of the task related and anti-task related network components 

in the learned dictionary can be quantitatively described by Eqs. (6)-(9). In addition, the reference weight 

parameter in each row of the matrix in Fig. 3c for each network component can be projected back to the 

volumetric fMRI image space (e.g., Fig. 3c) for the interpretation of their spatial distributions. In this 

way, the spatial distributions of network components in different brains can be compared within a 

template image space to verify their spatial overlaps, as well as to further determine their spatial 

correspondences (more details in Section 3.2).       

 

In addition to the task related and anti-task related network components that are characterized in the 

above Section 2.4, it is interesting that there are also a variety of intrinsic networks (e.g., Fox and Raichle, 

2007; Cohen et al., 2008; van den Heuvel et al., 2008) that are identifiable in task-based fMRI data. For 

instance, there is a network component that clearly corresponds to the DMN (Raichle and Snyder, 2007), 

as shown in Fig. 2d. Since the temporal and frequency characteristics of the DMN have not been well 

quantitatively described, we more rely on the spatial distribution patterns of the peak activities of DMN 

on a template brain space (Fox and Raichle, 2007; Cohen et al., 2008; van den Heuvel et al., 2008), as 

shown in Supplemental Figure 1. We then use a spatial overlap metric to determine the corresponding 

DMN components across individual brains.  
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3. RESULTS 

In this section, we designed a series of experiments to evaluate and validate the novel computational 

pipeline for identification of functional networks via sparse representation of whole-brain fMRI signals. 

First, the temporal and frequency properties of selected task related and anti-task related COIs from 15 

subjects in the dataset 1 are presented in Section 3.1. Afterwards, the spatial distribution patterns of these 

COIs are detailed and interpreted in Section 3.2. Then the framework is extensively evaluated and 

validated by comparisons with the ICA method (Section 3.3), by simulation studies with ground-truth 

(Section 3.4), and by an independent reproducibility studies in a separate dataset 2 (Section 3.5). An 

additional application of our method on event-related fMRI data is explored in Section 3.6 

 

3.1 Temporal and Frequency Properties of COIs from 15 Subjects 

Based on the methods and criteria in Section 2.4, we have obtained 29 task related and 25 anti-task related 

network components from the learned dictionaries of all the 15 subjects in dataset 1. On average, two 

network components of each type (task related or anti-task related) were selected for each subject, which 

correspond to the best-matched functional response to the task stimulus in terms of frequency spectrum 

and temporal correlation (Eqs. (7)-(10)). The time series component signals, the frequency spectra and the 

scores of the selected COIs of five randomly-chosen subjects are listed in Figs. 6-7. The results of other 

ten subjects are shown in Supplemental Figs. 2-3. Quantitatively, the average correlation of the signals of 

task related components with the stimulus curve (Eq. (8)) over all 15 subjects is 0.585 (with the standard 

deviation of 0.115), and their average energy concentration on the frequency spectra (Eq. (7)) is 40.9% 

(with standard deviation of 7%). The relatively high correlations and energy concentrations suggest that 

these selected COIs are well responsive to the stimulus curve, which is also evident in the second columns 

of Fig. 6 and Supplemental Fig. 2. It is thus natural to conjecture that these COIs correspond to the 
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functional networks that are responsive to the working memory task and are potentially equivalent to the 

traditional activated brain regions detected by the GLM method, which will be verified in Section 3.2.       

 

Figure 6. The selected task related network components from five randomly-chosen subjects with a total 

of 10 components. For each row in the figure, from the left to the right are: subject index and component 

index, time series signal of that component with overlaid stimulus curve (in yellow), the frequency 

Subject3                Ef = 0.500 

   #165                         Ecorr = 0.688 

 

Subject3                Ef = 0.414 

   #381                         Ecorr = 0.524 

 

Subject4                Ef = 0.447 

   #161                         Ecorr = 0.619 

 

Subject4                Ef = 0.464 

   #297                         Ecorr = 0.611 

 

Subject5                Ef = 0.449 

   #075                         Ecorr = 0.690 

 

Subject5                Ef = 0.430 

   #367                         Ecorr = 0.383 

 

Subject6                Ef = 0.400 

   #292                         Ecorr = 0.571 

 

Subject6                Ef = 0.452 

   #314                         Ecorr = 0.700 

 

Subject7                Ef = 0.449 

   #088                         Ecorr = 0.450 

 

Subject7                Ef = 0.554 

   #182                         Ecorr = 0.705 
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spectrum of that component, and the value of component scores, respectively. It is evident that the COI 

component time series signals are well correlated with the stimulus curve.   

 

Figure 7. The selected anti-task network components from the same five subjects, with a total of 8 

components. For each row in the figure, from the left to the right are: subject index and component index, 

time series signal of that component with overlaid stimulus curve (in yellow), the frequency spectrum of 

that component, and the value of component scores, respectively. It is evident that the COI component 

time series signals are well anti-correlated with the stimulus curve. 

 

Quantitatively, the average correlation of the signal of anti-task component with the stimulus curve (Eq. 

(8)) over all 15 subjects is -0.348 (with standard deviation of 0.014), and their average energy 

Subject3                  Ef =0.192 

   #310                          Ecorr =-0.299 

 

Subject3                  Ef =0.129 

   #334                          Ecorr =-0.265 

 

Subject4                  Ef =0.192 

   #269                          Ecorr =0.-227 

 

Subject5                  Ef =0.400 

   #358                          Ecorr =-0.504 

 

Subject6                  Ef =0.289 

   #227                           Ecorr  -0.388 

 

Subject6                  Ef =0.349 

   #311                          Ecorr =-0.157 

 

Subject7                  Ef =0.165 

   #179                          Ecorr =-0.379 

 

Subject7                  Ef =0.196 

   #369                          Ecorr =-0.328 
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concentration on the frequency spectra (Eq. (7)) is 23.1% (with standard deviation of 8%). It can be seen 

in Fig. 7 and Supplemental Fig. 3 that all the 15 subjects have well-matched anti-task related functional 

network components, suggesting that our methods can identify common anti-task networks in the 

response to stimulus paradigm from individual subjects. The relatively high anti-correlations and energy 

concentrations suggest that these selected COIs are highly anti-responsive to the stimulus curve, which is 

also evident in the second columns of Fig. 7 and Supplemental Fig. 3. We therefore conjecture that these 

COIs potentially correspond to the traditional de-activated brain regions detected by the GLM method, 

which will be evaluated in Section 3.2.  

 

3.2 Spatial Distribution Patterns of COIs 

In this section, the identified COIs in Section 3.1 will be further analyzed to elucidate their spatial 

distributions based on the methods in Section 2.5. Specifically, the 29 task related network components 

from the learned dictionaries of all the 15 subjects in dataset 1 are mapping to the volumetric images. 

Specifically, as the learning of coefficient matrix is constrained non-negative and the network region size 

and scale are controlled by the parameter 𝜆, in our experiment, we simply mapped the coefficients which 

are “>0” without setting additional threshold. This also applies to the following overlap analysis. As an 

example, in Figs. 8a-8d, we show two selected task related COIs of subject #1. The results for additional 

six different subjects are shown in Supplemental Figs. 4-5. In Figs. 8a-8b, the two COIs are color-coded 

with the reference weights of whole-brain voxels. We can see that each network component is composed 

of several Gaussian-shaped patterns of reference weights. This distribution pattern is consistent with 

previous observations of fMRI activation foci patterns (Faraco et al., 2011). From Figs. 8c-8d, we can 

observe that the signals of the selected networks have high correlation (around 0.6~0.7) with the stimulus 

curve (Eq. (8)), and its energies in the frequency spectra are dominantly concentrated on the frequency of 

0.0148Hz. This result supports our hypothesis in Eq. (6) and demonstrates the effectiveness and accuracy 

of the data-driven online dictionary learning methods (Mairal et al., 2010) in extracting meaningful basis 

patterns for sparse representation of whole-brain fMRI signals. Our results also provide additional 
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supporting evidence to the widely-used GLM methods (Friston et al., 1994; Worsley et al., 1997) that the 

brain’s functional activities could be very responsive to the specific task paradigm, e.g., the exactly 

matched frequency.  

 

Figure 8. (a)-(b) Two selected task related COIs of subject #1. (c) The corresponding temporal patterns of 

the two components in (a) and (b). (d) The corresponding frequency distribution of the two components in 

(a) and (b). (e) The group-wise statistical map of all task related components from 15 subjects of dataset 1 

in the MNI space. (f) Group-wise activation foci detected by FSL FEAT. 
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Furthermore, for each subject, since its task related network components share quite similar temporal and 

frequency characteristics (Fig. 6), we merged them (the reference weight matrix of α, Fig. 3c) into one 

volumetric map in order to comprehensively elucidate their spatial distribution patterns. After registering 

and warping them into the Montreal Neurologic Institute (MNI) template space by the FSL FLIRT, we 

averaged the complete task related networks from a group of 15 subjects and visualized the averaged 

statistical atlas in Fig. 8e. For comparison purpose, the group-wise activation map obtained by applying 

the FSL FEAT on the same working memory task-based fMRI data is also visualized in Fig. 8f. We can 

see that the spatial distributions of task related network by our methods and those of the activation foci by 

FSL FEAT are quite similar. Quantitatively, the overlap of color regions in Figs. 8e-8f account for 86.8% 

of the result by our method (Fig. 8e) and 66.6% of result by FSL FEAT (Fig. 8f). This relatively high 

overlap demonstrates that the task related functional network detected by our method is quite meaningful 

and consistent with that by FSL FEAT, suggesting the validity and effectiveness of the dictionary 

learning and sparse representation methods described in Section 2.3 in uncovering meaningful functional 

activity patterns from whole-brain fMRI data. Furthermore, the reasonably consistent task-related 

functional networks in individual brains in Figs. 8a-8b and Supplemental Fig. 4-5, as well as the 

comparable group-wise activity patterns in Figs. 8e-8f, suggest that our COIs selection methods in 

Section 2.4 could potentially serve as a novel, alternative approach to detecting task-based fMRI 

activations. This important issue will be further explored in the Section 3.5.       

 

Similarly, the reference weight matrices (α, Fig. 3c) of 25 anti-task related network components from the 

learned dictionaries of all the 15 subjects in dataset 1 are mapped and examined on volumetric images. 

Specifically, in Figs. 9a-9d, we show the two selected anti-task related networks of subject #6. The results 

of additional six subjects are shown in Supplemental Figs. 6-7. Similar to those in Fig. 8, their spatial 

distributions are multiple Gaussian-shaped foci. The temporal time series signals of these anti-task 

components have relatively strong Pearson correlations (-0.4~-0.5) with the block-design stimulus curve, 
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as shown in Fig. 9c. Also, their energies in the frequency domains are dominantly concentrated on 

0.0148Hz, as shown in Fig. 9d. Again, this result further supports our hypothesis in Eq. (6) and 

demonstrates the validity and reliability of the data-driven online dictionary learning methods (Mairal et 

al., 2010) in extracting not only task related but also anti-task related basis patterns for sparse 

representation of whole-brain fMRI signals.  

 

Figure 9. (a-b) Two identified anti-task COIs of subject #6. (c) The corresponding time series patterns of 

the two components in (a) and (b). (d) The corresponding frequency distribution of the two components in 
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(a) and (b). (e) The group-wise averaged statistical atlas of all anti-task components from 15 subjects of 

dataset 1 in the MNI space. (f) Group-wise de-activation foci detected by FSL FEAT. 

 

Additionally, for each subject, given that its anti-task related components exhibit similar temporal and 

frequency characteristics (Fig. 7), we merged their reference weight matrices (α, Fig. 3c) into one 

volumetric map in order to better examine their spatial distributions in a similar way as in Fig. 8e. For 

comparison purpose, the group-wise de-activation map obtained by applying FSL FEAT is visualized in 

Fig. 9f. It is evident that the spatial distributions of anti-task related network by our methods and those of 

the de-activation foci by FSL FEAT are similar. Quantitatively, the overlap of color regions in Figs. 9e-9f 

account for 46.6% of the result by our method (Fig. 9e) and 72.1% of result by FSL FEAT (Fig. 9f). This 

relatively high overlap suggests that the anti-task related functional network identified by our method is 

quite meaningful and consistent with that by FSL FEAT, further demonstrating the validity and 

effectiveness of the dictionary learning and sparse representation methods described in Section 2.3 in 

uncovering meaningful functional patterns from whole-brain fMRI data. Similarly, the consistent anti-

task related functional networks in individual brains in Figs. 9a-9b and Supplemental Fig. 6-7 and the 

consistent group-wise activity patterns in Figs. 9e-9f indicate that our COIs selection methods in Section 

2.4 could potentially serve as a novel, alternative approach to detecting fMRI de-activations, which will 

be further investigated in the future.     

 

The temporal-frequency analysis framework in Section 2.4 have successfully uncovered the task and anti-

task related network components as shown in Figs. 8-9 and Supplemental Figs. 2-7. Then, based on the 

spatial pattern analysis methods in Section 2.5, we measured the spatial overlaps of the dictionary 

components with the DMN template in Supplemental Fig. 1. It is interesting that we can successfully 

identify the DMNs in all of the 15 subjects in dataset 1, as shown in Fig. 10 and Supplemental Fig. 8. The 

group-wise averaged statistical map of the DMN components by our methods (Fig. 10d) is also visually 
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and quantitatively (the overlapped area accounts for 42.7% of our result and 56.1% of the template) 

similar with the template in the MNI space (Supplemental Fig. 1). This result further demonstrates that 

our methods are effective in uncovering meaningful network components from task-based fMRI data, 

even though the DMN is a intrinsic network and its temporal and frequency characteristics are much more 

complex and variable than the task and anti-task components, as shown in Supplemental Fig. 9. Also, an 

important neuroscience insight obtained from the results here is that intrinsic networks such as the DMN 

(Fox and Raichle, 2007; Cohen et al., 2008; van den Heuvel et al., 2008) are active in task performance 

state and are clearly identifiable. This observation and the methods developed in this paper might open a 

new window to examine the functional interactions among intrinsic networks and task/anti-task related 

networks in the future.         
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Figure 10. (a-c) Identified default mode network components of subject #1, #2, and #10. Additional 

examples are shown in Supplemental Fig. 8. (d) The group-wise averaged statistical map of all DMN 

components from 15 subjects of dataset 1 in the MNI space. 

 

Based on the identified task, anti-task and DMN components in Figs. 8-10 in the 15 subjects, we 

quantitatively measured the percentages of their volumes and the overlapped regions among these three 

components, as illustrated in the bottom panels of Supplemental Fig. 10. The percentages for all 15 

subjects in dataset 1 are shown in Table 1, and the visualizations of these percentages are shown in 

Supplemental Fig. 10. From Table 1 and Supplemental Fig. 10, we can clearly see that these three 

network components are substantially overlapping with each other in the spatial domain, suggesting that 

functional brain networks do not necessarily work independently, but instead they interact with each other 

on the overlapped brain areas. These results also demonstrate that one cortical region could potentially 

participate in multiple functional roles, as widely reported in the literature (e.g., Bisley and Pasternak, 

2000; Lalonde et al., 2002; Fogassi et al., 2005; Zaksas et al., 2006; Fischera et al., 2008). It is interesting 

that the dictionary learning and sparse representation methods can not only uncover and characterize 

those separate network components, but also reveal how they contribute to the compositions of dozens of 

thousands of fMRI signals within the whole brain. 

 

Table 1. The overlap percentages of three detected networks from 15 subjects in dataset 1. T: Task 

network; A: Anti-task network; D: Default mode network. SD stands for standard deviation.  

Network Overlap T(%) A(%) D(%) T&A(%) A&D(%) T&D(%) T&A&D(%) 

Sub.1 40.76 62.20 36.39 3.05 36.26 2.04 2.00 

Sub.2 46.16 57.07 27.53 3.45 27.25 1.53 1.47 

Sub.3 40.43 48.45 27.16 6.66 7.51 2.51 0.64 

Sub.4 48.75 25.44 33.99 2.50 3.25 2.52 0.09 

Sub.5 67.45 35.92 35.92 3.36 35.92 3.36 3.36 

Sub.6 37.12 52.41 22.40 3.53 7.12 1.64 0.36 
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Sub.7 42.52 41.73 25.93 3.57 4.94 1.97 0.30 

Sub.8 43.92 53.33 17.83 9.52 3.84 2.16 0.45 

Sub.9 60.71 23.39 24.02 2.05 3.71 2.48 0.13 

Sub.10 52.85 52.89 33.75 5.78 33.72 2.21 2.21 

Sub.11 52.61 21.97 37.23 2.31 4.66 5.19 0.34 

Sub.12 36.61 52.54 26.28 5.01 8.55 2.43 0.56 

Sub.13 60.55 13.70 33.99 1.31 3.76 3.28 0.11 

Sub.14 44.83 36.81 29.32 1.71 5.83 3.60 0.18 

Sub.15 56.25 50.38 36.16 6.67 36.10 4.53 4.51 

Average 48.77 41.88 29.86 4.03 14.83 2.76 1.11 

SD 9.33 14.88 5.97 2.27 14.15 1.04 1.35 

 

3.3 Comparisons with ICA Method 

In this section, we performed independent component analysis (ICA) of whole-brain fMRI signals via the 

FSL MELODIC toolkit (Beckmann et al. 2005) as an independent source to compare and evaluate the 

identified functional networks via sparse representation in Section 3.2. Specifically, we set the 

MELODIC-ICA to automatically estimate the optimal dimensionality of the data to achieve convergence 

stability. First, we identified and examined the DMN via the methods in Section 2.5 and defined the true 

positive rate as: 

𝑅(𝑋, 𝑇) =
|𝑋 ∩ 𝑇|

|𝑇|
 (11) 

where 𝑋 is the component’s spatial map and 𝑇 is the DMN template (Supplemental Fig. 1). The true 

positive rate was applied to measure the similarity between the ICA-derived spatial map and the DMN 

template (Supplemental Fig. 1). For both sparse representation and ICA methods, the spatial map with the 

highest true positive rate with the DMN template was selected as the DMN, and the results are shown in 

Fig. 11. The mean true positive rate of identifying DMN in our sparse representation of all 15 subjects is 

0.36 (0.30-0.49), while the average true positive rate for ICA method is 0.27 (0.24-0.29). The detailed 

results for each subject are shown in Table 2. Therefore, both qualitative (Fig. 11) and quantitative (Table 

2) results indicate that our sparse representation methods can more consistently and reliably identify 
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DMN, compared with the commonly-used ICA approach. Also, the sparse representation method can 

identify a more complete map of DMN than ICA. Our interpretation is as follows. As shown in Table 1, 

those additional brain regions in the DMN mapped by our sparse representation method are also involved 

in other network components such as task related and anti-task related components, all of which interact 

with each other and are not necessarily spatially independent (Daubechies et al., 2009; Lee et al., 2011). 

Thus, those additional overlapped regions in the DMN are difficult to be identified via the ICA method 

that assumes spatial independence of the network components. The results in Fig. 11 and Table 2 

demonstrated the effectiveness and accuracy of the proposed sparse representation methods in uncovering 

intrinsic networks (DMN in this work) in task-based fMRI data.   

 

Figure 11. The spatial maps of DMN obtained by the sparse representation and ICA methods for all 15 

subjects in dataset 1, respectively. For each subject, the most informative slice which was superimposed 

on the mean fMRI image of each subject is shown (left: sparse representation; right: ICA). The spatial 

maps were selected by calculating and sorting the true positive rate with the DMN template provided in 

GIFT toolbox (http://mialab.mrn.org/software/gift/index.html), with a mean rate of 0.36 for sparse 

representation and a mean rate of 0.27 for ICA of all 15 subjects. All ICA spatial maps were converted to 

Z-transformed statistic maps using the default threshold value 0.5 (Beckmann et al., 2005). The color 

scale of spatial maps in sparse representation ranges from 0 to 10. 
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Table 2. The mean overlap rate of DMN in all 15 subjects of dataset 1 by sparse representation and ICA.  

Sub #1 #2 #3 #4 #5 #6 #7 #8 

Sparse 0.49 0.37 0.36 0.41 0.40 0.34 0.31 0.33 

ICA 0.27 0.27 0.29 0.27 0.28 0.25 0.27 0.24 

Sub #9 #10 #11 #12 #13 #14 #15 Mean 

Sparse 0.34 0.47 0.30 0.35 0.30 0.31 0.37 0.36 

ICA 0.26 0.27 0.29 0.25 0.28 0.28 0.28 0.27 

 

3.4 Validation by Simulated Data 

In this section, the proposed sparse representation framework is applied on simulated data with ground-

truth to examine its reliability, robustness and reproducibility. In our sparse representation framework 

(Fig. 3), the whole-brain fMRI signals are factorized into multiple network components with 

corresponding basis time series signals. Thus, we adopt the previously factorized time series basis of 

components as benchmark, and aggregate them together with a chosen A matrix to generate simulated 

fMRI signals in the brain. Specifically, we choose the A matrix from the factorization of one model 

subject as the coefficient map ground truth.  The 400 basis signal components will be randomly selected 

from a total of 6000 trained component signals of 15 subjects and then be used to compose the network 

components of the simulated subject. Thus, we can generate the simulated whole-brain fMRI signals by: 

𝐷𝑎𝑡𝑎∗ = ∑ 𝐷𝑖𝑘
𝐴𝑘

400

𝑘=1

 (12) 

where 𝐴𝑘 are the reference weight matrices of network components from the certain A matrix we chose. 

𝐷𝑖𝑘
 is a randomly picked signal such that 𝑖𝑘 = 𝑟𝑎𝑛𝑑𝑜𝑚({1 … 6000})  and 𝑖𝑝 ≠ 𝑖𝑞  for 𝑝 ≠ 𝑞 . Such 

simulation was performed 60 times with 4 times on the components of each subject. By using the 

framework in Fig. 3, 400 dictionary network components are obtained and then compared with the 400 

ground-truth components that were used to generate the simulated whole-brain fMRI data. Specifically, 
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the Jaccard similarity coefficient is used to measure the similarity between the factorized reference weight 

matrices as below: 

𝐽(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 (13) 

where 𝐴, 𝐵  are two spatial maps. The Sørensen distance (Cha, 2007) is employed to measure the 

similarity between network component time series signals. 

𝐷𝑖𝑠(𝑝, 𝑞) =
∑ |𝑝𝑖 − 𝑞𝑖|𝑛

𝑖=1

∑ |𝑝𝑖| + |𝑞𝑖|𝑛
𝑖=1

 
(14) 

where 𝑝, 𝑞 ∈ ℝ1×𝑁 are two component signal vectors. 

 

Afterwards, each newly obtained network component is compared with the ground-truth components. The 

pair with the highest Jaccard similarity coefficient or the lowest Sørensen distance is considered as the 

corresponding components and the similarity/distance values are recorded for further statistical analysis. 

The comparison result of one simulation is shown in Fig. 12a. More simulation results are provided in 

Supplemental Figure 11. It is evident that most of the pairs between uncovered components and ground-

truth have relatively high similarity (close to 1). Also, the distance between corresponding signals are 

relatively low (close to 0). Notably, as highlighted by the black arrows in Fig. 12a, components #12, #312, 

and #330 in this example have lower component similarities and higher signal distances, meaning that the 

online dictionary learning algorithm (Mairal et al., 2010) might have difficulty in uncovering a very small 

portion of the network components. For the 60 simulations, we counted the numbers of obtained network 

components with different component similarities/signal distances in Table 3. By taking those network 

components with similarity to ground-truth lower than 0.8 or signal distance to ground-truth higher than 

0.05 as unsuccessful ones, 99.18% network components are successfully uncovered from the simulated 

data, which is very high. This result suggests that the online dictionary learning algorithm and the sparse 

representation framework are reliable and robust in decomposing the aggregated whole-brain fMRI 

signals into meaningful basis signals and reference weight matrices. 
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However, the above simulation is based on the ideal assumption. In real data, noise should be taken into 

consideration. Hence, we added Gaussian random noises to the above simulation to investigate at which 

level of signal-noise ratio (SNR), the decomposing is effective and stable. In our experiment, the 

meaningful signals are the ones reconstructed with D and A, and noises are the reconstruction residuals. 

Bases on the example in Fig. 12a (without noise), we simulated data with different levels of SNRs as 

shown in Fig. 12b. The comparison with ground-truth is also based on the component similarity and 

signal distance. As we can see in Fig. 12b, with SNR>10 DB, the reconstruction is quite akin to the one 

without noise. While SNR<10 DB, the reconstruction error becomes gradually dramatic. However, at the 

noise level SNR=8 DB, the component similarity is around 0.8 and signal distance is around 0.15, which 

is still acceptable. In our real data of Dataset 1, based on the settings in this paper, the SNR is around 10 

on average. Thus this simulation provides evidence that our settings are reliable in reconstructing stable 

networks.        

 
(a) 
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(b) 

Figure 12. (a) An example of the comparison between ground-truth and trained components on simulated 

data in terms of component similarity (Left y-axis) and signal distance (Right y-axis). The x-axis indicates 

component IDs. (b) The same comparison with a series of levels of noise based on the same example in 

(a). The noise is added with measures of SNR of 15 DB, 12 DB, 10 DB, 9 DB, 8 DB, and 7 DB. 

  

Table 3. The histogram of numbers of network components among 24000 candidates in the simulation. 

Component Similarity 1~0.99 0.99~0.95 0.95~0.9 0.9~0.8 0.8~0.6 0.6~0 

Component Number 22255 1421 117 88 33 86 

Signal Distance 0~0.02 0.02~0.05 0.05~0.1 0.1~0.2 0.2~0.4 0.4~1 

Component Number 20791 3037 70 22 23 57 

 

3.5 Reproducibility Study 

A key parameter in the sparse representation framework in Section 2.3 is the dictionary size (m in Fig. 3). 

In this section, we first examine if/how the setting of dictionary size while performing the online 

dictionary learning would affect the experimental results. As an example, we repeated the methods in 
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Section 2.3-2.4 on one randomly selected subject in dataset 1 with different dictionary sizes ranging from 

300 to 500 with the interval of 10, and the selected dictionary items corresponding to the task related 

network components are listed in Table 4. We can see that the component #165 was consistently selected 

among all of these experiments and the component #381 was consistently selected among all the 

experiments with dictionary size larger than 380. For further verification, in Figs. 13-14, we visualized 

the temporal, frequency and spatial characteristics of the selected corresponding component #165, while 

the dictionary size is 300, 350, 400, 450 and 500, respectively. We can see that the selected component 

#165 is consistent and reproducible across different parameter settings with quite similar temporal, 

frequency and spatial patterns. Notably, when the dictionary size is lower than 380, our method only 

selected #165 as the COI. But when the size is higher than 380, our method can consistently detect #381 

as COI. This is because the online dictionary learning method considers dictionary components 

accumulatively (Mairal et al., 2010). Supplemental Fig. 12 visualized the selected anti-task component 

#310 while the dictionary size is 350~500. Their temporal, frequency and spatial patterns are also quite 

consistent. 

 

Selection of the dictionary size is still an open question in the machine learning field. Based on our 

experience, firstly, the dictionary size should be larger than the lowest dimension size of the training data 

and much smaller than the highest dimension size, e.g., in our experiment m>t, m<<n. This guarantees 

that the dictionary is over complete to reconstruct the data. Secondly, the dictionary size determines the 

reconstruction residual, as well as the SNR. As discussed in Section 3.4, if the SNR is not big enough, the 

reconstruction could not be stable. So the dictionary size should be big enough to satisfy certain level of 

SNR. But the dictionary could neither be too big, which will contain redundant information. Thus, our 

solution is to set the dictionary size which satisfy t<m<2t. As discussed in the last paragraph, the 

interested components can be stably reconstructed in the certain range. 
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Table 4. The selected task related component items (atom IDs shown here) of one subject using different 

settings of dictionary sizes in the dictionary learning procedure. 

Dictionary 

size 
300 310 320 330 340 350 360 370 380 390 400 

Selected 

Component 

IDs 

#165 #165 #165 #165 #165 #165 #165 #165 #165 #165 #165 

                  #381 #381 

            

Dictionary 

size 
410 420 430 440 450 460 470 480 490 500 

 

Selected 

Component 

IDs 

#165 #165 #165 #165 #165 #165 #165 #165 #165 #165 
 

#381 #381 #381 #381 #381 #381 #381 #381 #381 #381 
 

 

 

Figure 13. The temporal and frequency characteristics of the network component #165 with different 

dictionary sizes (300, 350, 400, 450 and 500). For each row in the figure, from the left to the right are: 

dictionary size and component index, time series signal of that component with overlaid stimulus curve 

(in yellow), the frequency spectrum of that component, and the value of component scores, respectively. 

Size 300 

#165 

 

Size 300              Ef = 0.488 

   #165                        Ecorr=0.699 

 

Size 350               Ef = 0.491 

   #165                        Ecorr= 0.702 

 

Size 400               Ef = 0.504 

   #165                        Ecorr= 0.696 

 

Size 450               Ef = 0.528 

   #165                        Ecorr= 0.713 

 

Size 500               Ef = 0.556 

   #165                        Ecorr= 0.720 
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Size 350 

#165 

 
Size 400 

#165 

 
Size 450 

#165 

 
Size 500 

#165 

 

Figure 14. The spatial distribution patterns of network components #165 with different dictionary sizes 

(300, 350, 400, 450 and 500).  
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Figure 15. (a)-(c) Three identified task-related network components of a randomly selected subject in 

dataset 2. (d) The corresponding temporal time series patterns of the three components in (a)-(c). (e) The 

corresponding frequency distribution of the components in (a)-(c). (f) The group-wise averaged statistical 

map of all task components from 10 subjects in the MNI space. (g) Group-wise activation detected by 

FSL FEAT. 
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To further evaluate and validate the proposed methods, we applied the sparse representation framework in 

Section 2.3 on the dataset 2 in Section 2.2, and selected those task related components from the learned 

dictionary based on the criteria in Section 2.4. As an example, the spatial distribution patterns of three 

selected task related components of one subject are visualized in Figs. 15a-15c. The group-wise averaged 

map of the selected task related networks (Fig. 15f) among the 10 subjects is highly consistent (the 

overlapped area accounts for 67.8% of our result and 73.6% of the results by FSL FEAT) with the group 

activation detection results (Fig. 15g) obtained by FSL FEAT that is based on GLM. This result further 

demonstrates that the dictionary learning and sparse representation methods in this paper can reliably 

uncover meaningful brain networks and that this framework could potentially serve as a novel, alternative 

approach to detecting fMRI activation, as mentioned in Section 3.2.  

 

Also, the corresponding temporal and frequency characteristics of these selected components in dataset 2 

are shown in Figs. 15d-15e. It is apparent that the time series of these network components well follow 

the external task stimulus curve (the white curve in Fig. 15d). Also, the peak of the energy concentrations 

of these components, which is around 0.022Hz based on the frequency domain analysis, is exactly the 

same as the theoretic input frequency of the external stimulus, as calculated by the equation below: 

1

 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡𝑎𝑠𝑘+𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑟𝑒𝑠𝑡
∗

1

𝑇𝑅
=

1

20+10
∗

1

1.5
= 0.0222𝐻𝑧                                 (15) 

 

This result further demonstrates the effectiveness and accuracy of the online dictionary learning methods 

(Mairal et al., 2010) in extracting meaningful basis patterns for sparse representation of whole-brain fMRI 

data. Quantitatively, the temporal and frequency characteristics of the 20 selected example COIs from 10 

subjects are shown in Table 5. These experimental results further showed that our sparse representation 

methods are robust and reproducible across independent datasets with different paradigm designs. 
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Table 5. The Ef and Ecorr of selected COIs of 10 subjects in the semantic decision making task fMRI data.  

Selected 

COIs 

Sub.1 

#157 

Sub.1 

#264 

Sub.2 

#184 

Sub.2 

#386 

Sub.3 

#235 

Sub.3 

#305 

Sub.4 

#164 

Sub.4 

#243 

Sub.5 

#253 

Sub.5 

#380 

Ef 0.482 0.491 0.592 0.535 0.534 0.555 0.590 0.565 0.539 0.514 

Ecorr 0.473 0.503 0.659 0.547 0.586 0.590 0.601 0.704 0.607 0.611 

 

Selected 

COIs 

Sub.6 

#31 

Sub.6 

#194 

Sub.7 

#223 

Sub.7 

#384 

Sub.8 

#170 

Sub.8 

#196 

Sub.9 

#368 

Sub.9 

#374 

Sub.10 

#205 

Sub.10 

#388 

Ef 0.523 0.396 0.589 0. 580 0.685 0.587 0.527 0.576 0.516 0.670 

Ecorr 0.653 0.478 0.580 0.599 0.727 0.474 0.527 0.635 0.721 0.723 

 

3.6 Extended application on event-related fMRI data 

In the field of neuroscience, event–related fMRI is another popular methodology, other than block design 

task fMRI, to analyze brain activations or networks. There are challenges in analyzing event-related fMRI 

data because neither the temporal pattern nor the frequency distribution of the stimulus is designed in a 

fixed fashion. Especially the frequency distribution of the event time series could be more complicated. In 

this section, we extend the application of our method to an open event-related fMRI dataset as detailed in 

Dataset 3 in Section 2.2. In our application, the 𝐸𝑐𝑜𝑟𝑟,𝑗  still applies, but considering the complex 

frequency distribution, we modified the energy function as: 

𝐸𝑓,𝑗  = 𝑐𝑜𝑟𝑟(𝐹𝑆𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 , 𝐹𝐷𝑗) 

where 𝐹𝐷𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠  is the frequency spectrum distribution curve of the stimulus which is obtained by 

applying Fourier transform to the stimulus time series and  𝐹𝐷𝑗 is the frequency spectrum distribution 

curve of the j
th
 atom in dictionary D. In other words, we use the correlation of the frequency spectrum to 

measure their similarity in the frequency domain. 

 

With this modified approach, the identified task-related networks from the event-related fMRI data are 

presented in Fig. 16. Fig. 16a and 16b show the spatial distributions of two selected networks from one 
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single subject. Their temporal patterns are quite similar with the task event curve as shown in Fig. 16c. 

Meanwhile the frequency spectra of the networks are also akin to the frequency distribution of the 

stimulus (Fig. 16d). The group average of the networks from 26 subjects is shown in Fig. 16e, which 

agrees with the group-wise GLM result (Fig. 16f). In addition, the selected anti-task networks and DMN 

networks are shown in Fig. 17 and Fig. 18. They are also meaningful and reliable. In particular, the task-

related networks and anti-task networks also agree with the results reported in Kelly et al., 2008, Mennes 

et al., 2010 and Mennes et al., 2011. 

 

Figure 16. (a)-(b) Two identified task-related network components of a randomly selected subject in 

dataset 3. (c) The corresponding temporal time series patterns of the two components in (a)-(b). (d) The 
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corresponding frequency distributions of the components in (a)-(b). The white curves in (c) and (d) are 

temporal and frequency patterns of stimulus respectively. (e) The group-wise averaged statistical map of 

all task components from 26 subjects in the MNI space. (f) Group-wise activation detected by FSL FEAT. 

 

Figure 17. (a)-(b) Two identified anti-task network components of a randomly selected subject in dataset 

3. (c) The corresponding temporal time series patterns of the two components in (a)-(b). (d) The 

corresponding frequency distributions of the components in (a)-(b). The white curves in (c) and (d) are 

temporal and frequency patterns of stimulus respectively. (e) The group-wise averaged statistical map of 

all task components from 26 subjects in the MNI space. (f) Group-wise activation detected by FSL FEAT. 
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Figure 18. (a-c) Identified default mode network components of three random selected subjects in 

Dataset 3. (d) The group-wise averaged statistical map of all DMN components from 26 subjects of 

dataset 3 in the MNI space. 

 

4. DISCUSSION AND CONCLUSION 

4.1 Co-activated Networks  

Brain regions or networks that are evoked by external stimulus may react in different patterns even 

though they are all highly correlated with task design. This may be attributed to physical variations, e.g., 

different HRFs of different regions, however, it is also likely that these variations across networks stem 

from their different streams or different levels in the brain information flow, as well as their interactions 

or communications. Thus, modelling brain activations with a uniformed task design in traditional methods 

is coarse. In our experiments, based on the temporal and frequency criteria, multiple task-related networks 
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are selected for most of the subjects. From the inspection on Fig. 8, Supplemental Fig. 2 and 

Supplemental Fig. 4-5, we can find that the temporal and frequency patterns of the multiple networks are 

all in agreement with the stimulus design, though noticeable difference can also be found among them. 

Spatially, they perform distinct patterns with ratios of overlaps in each single subject, however, they are 

all sub-regions of the activations and their aggregation is very similar to the activation pattern from the 

GLM method. Here we call them co-activated networks. Comparing with the model-driven method which 

only produces strength of activation, our data-driven framework provides a new window to investigate 

how sub-networks could interact or cooperate to complete a task in the brain. Although some of them are 

not stable due to reasons such as parameter selection, but we can still find very stable and dominant 

networks at the visual cortex, superior/middle frontal gyrus, precentral gyrus, and superior parietal lobe, 

which are associate with working memory processes. 

 

4.2 Anti-task Network and DMN 

Previous studies (Fox et al., 2005; Fransson et al., 2005) have reported that DMN tends to exhibit anti-

task performance in task fMRI scans. This point is supported in our study. As observed in Table 1 and 

Supplemental Fig. 10, anti-task networks and DMNs exhibit substantially high overlap rates. For some 

subjects, they even have overlaid component IDs, e.g., for subject 1 anti-task networks include 

component #330 and #387, and the component #387 is also identified as DMN. Meanwhile, in our 

experiments based on three datasets, the anti-task networks are not limited to DMN, i.e., there are more 

regions or sub-networks that exhibit anti-task performance, especially when comparing group-wise results 

in Fig. 9, Fig. 10, Fig. 17 and Fig. 18. From the perspectives of temporal and frequency domains 

(Supplemental Fig. 9), our detected components of DMNs have negative correlation but the strength is 

not as high as the task ones. We can observe that the signal patterns of DMN may involve multiple 

frequencies of fluctuation. It is essential to point out that the selection of anti-task network is based on 

temporal frequency analysis, while the identification of DMN is based on spatial similarity. The final 
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overlap of component IDs suggests the effectiveness of both approaches. Also, this result provides a clue 

that a brain network could be profiled or characterized in multi-domains, suggesting the data-driven 

dictionary learning and sparse coding methods are effective in modeling brain networks. 

 

4.3 Networks on Thalamus  

Based on the analyses of the three datasets, especially when comparing the group-wise networks and 

group-wise GLM activations in Fig. 8, Fig. 15 and Fig. 16, it is easy to observe a common phenomenon 

that the task-related networks in our method do not include the thalamus areas. In contrast, across all the 

three datasets, the GLM based method determined the thalamus or part of it as activation. To explore this 

question, we used the similar method as that for detecting DMN, that is, the thalamus template was 

employed to filter all the components of each subject. Finally the most spatially similar network was 

selected for each subject, as shown in Figs. 19a-19c and Supplemental Fig. 14 (I-II) (a-c). From the 

figures, we can see that in our method the thalamus was learned into a single network, and the spatial 

patterns are quite consistent across subjects and across datasets (Fig. 19d, Supplemental Fig. 14 (I-II) 

d).We further inspected the temporal and frequency patterns of these selected thalamus networks. As 

visualized in Fig. 20 and Supplemental Fig. 15, the temporal patterns and frequency patterns are 

complicated and individualized. In particular, the energies of signals are distributed on multiple frequency 

bands. This is in agreement with the thalamus’ complex functions of relaying sensory and motor signals 

to the cerebral cortex. It is meaningful that the GLM could detect task activations in the thalamus, 

however, the activation strength is not as strong as other task-evoked areas. This may also be attributed to 

the complex functions that the thalamus plays. In our view, the functions of thalamus could not be 

straightforwardly described as strength of activations or how much its fMRI signals follow the stimulus 

curve. More detailed analysis should be carried out based on our data-driven framework in the future.  
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Figure 19. (a-c) Identified thalamus network components of three random selected subjects in Dataset 1. 

(d) The group-wise averaged statistical map of all thalamus components from 15 subjects of Dataset 1 in 

the MNI space. 

ID Temporal patterns Frequency patterns 

Sub.1 

  
Sub.2 

  

Sub.3 

  
Figure 20. The temporal and frequency patterns of the selected thalamus networks in Fig.19a-19c from 

Dataset 1. 
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4.4 Other Detected Networks 

Brain function is complex, and thus simple models are not likely sufficient in modeling all the networks 

that are active or idle, directly or indirectly participating in the task performance. With our data-driven 

strategy, the whole brain can be decomposed into hundreds of distinct networks with specific activity 

patterns. These networks are not limited to task-related networks, anti-task networks, DMN and the 

thalamus. There are also other networks that call for further new methods to characterize them. For 

example, in the working memory task in which the task is presented as vision stimulus, in addition to the 

task-related networks we can also find auditory network and motor network among the hundreds of 

networks as shown in Fig. 21a and Fig. 21b. Their temporal activities are shown in Fig.22a and Fig.22b. 

Some neuroanatomic areas can be also grouped into a single network, such as the ventricle areas as shown 

in Fig. 21c and Supplemental Fig.16, the time series of which are shown in Fig.22c and Supplemental 

Fig.17, respectively. Although we still do not know if the BOLD activity of the ventricle network is 

caused by motion noise or it is physically meaningful, our method provides a new window to explore in 

the future. In summary, our premise is that all these networks intrinsically exist in the brain no matter 

what task the brain is performing; however, in different tasks these networks may exhibit different 

patterns of activities and interactions. In our future work, new methods will be developed to characterize 

all these networks and to model their interactions. 
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Figure 21. Other networks detected in the working memory task dataset (for one randomly selected 

subject). (a) Auditory network. (b) Motor network. (c) Ventricle network. 

Network Temporal patterns Frequency patterns 

 Auditory 

  

Motor 

  

Ventricle 

  

Figure 22. The corresponding temporal and frequency patterns of the networks in Fig.21a-21c from 

Dataset 1. 

 

4.5 Conclusion 

We have presented a novel computational methodology of representing whole-brain fMRI signals via 

sparse coding and dictionary learning. The basic idea is to aggregate all of fMRI signals within the whole 
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brain of one subject into a big data matrix, which is factorized into an over-complete dictionary basis 

matrix and a reference weight matrix via an online dictionary learning algorithm. We then designed a 

computational framework for quantitative characterization of the dictionary components in temporal, 

frequency and spatial domains. The interesting result from this work is that the decomposed atomic 

dictionary components in a working memory task-based fMRI dataset, a semantic decision making task-

based fMRI dataset and a flanker event-related fMRI dataset exhibit functionally meaningful spatial, 

temporal and frequency patterns, as shown in the results sections. Our results not only demonstrated the 

effectiveness of data-driven sparse representation for task-based fMRI signals in identifying multiple 

functional networks, but also revealed how these functional networks contribute to the compositions of 

dozens of thousands of fMRI signals within the whole brain. The comparisons of the results by our 

method with those by group-wise GLM and ICA methods, as well as with the synthesized data with 

ground-truth, demonstrated the validity, robustness, reproducibility and effectiveness of our methods. In 

general, our work potentially provides a novel, alternative window to examine the holistic functional 

activities of the brain.  

 

Meanwhile, the methods and work in this paper can be further enhanced and expanded in the following 

directions in the future. In this paper, we have focused on the quantitative characterization of spatial, 

temporal and frequency patterns of three well-known categories of dictionary atoms including the task-

related, anti-task related and default mode network components, as shown in Section 3.2. It should be 

pointed out that there are many other potentially important and meaningful dictionary network 

components such as auditory network, motor network, and Thalamus that should be examined and 

characterized in the future. For instance, Fig. 23 shows the spatial distributions of three other dictionary 

components (the version on the original surface of Fig. 23 can be found in Supplemental Fig. 13(II)). It is 

clear that those components are spatially overlapping and temporally interacting with each other. 

Quantitative description and characterization of those hundreds of dictionary components across multiple 
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individuals are warranted to comprehensively understand and represent the functional activities of the 

brain in the task-based fMRI data in the future. Once successful, these well-characterized components can 

be potentially used as functional network atlases for other brain mapping applications in the future.    

 

Figure 23. Visualization of three other network components (in addition to the three components in Fig. 

1) on the inflated cortical surface. They are atom #20 (yellow), atom #220 (blue) and atom #278 (red) 

extracted from the learned dictionary of the same subject in Fig. 1. (a-c) show different views of 

representing the spatial distribution patterns of the three components. (d) demonstrates the color scheme 

of different components fusion. For example, the regions belonging to both atoms #220 and #278 are 

represented as cyan, and green stands for the overlapped areas of atoms #20 and #278. 

 

At the current stage, the sparse representation framework was applied on each individual subject 

independently. Our experimental results have demonstrated the promising reproducibility and robustness 

of the framework in which those COIs identified in different subjects can find reasonably good 

correspondences based on their spatial, temporal and frequency characteristics (Section 3.2). In the future, 

we plan to explore if/how the whole-brain fMRI signals from a group of subjects can be aggregated into 

one big data matrix so that the dictionary atoms can be learned together and interpreted across a 
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population. In this case, the commonly shared dictionary network components, such as the task related 

and anti-task related components, might exhibit consistent functional responses to the same stimulus and 

possess intrinsically established correspondences across individuals. However, it would be more 

challenging to interpret those intrinsic network components since their temporal and/or frequency 

properties might exhibit much more variable and heterogeneous patterns across individuals, as already 

shown in Supplemental Fig. 9. It is expected that the spatial distribution templates, e.g., that in 

Supplemental Fig. 1, might be an effective constraint to map those intrinsic network components and we 

plan to explore such possibility for other intrinsic networks (Fox and Raichle, 2007; Cohen et al., 2008; 

van den Heuvel et al., 2008).       

 

Our results in Section 3.2 has demonstrated that intrinsic networks such as the DMN (Fox and Raichle, 

2007; Cohen et al., 2008; van den Heuvel et al., 2008) are active in task performance state and they can 

be successfully identified by our sparse representation methods. Our results also demonstrated that the 

intrinsic networks are spatially overlapping with other task related and anti-task related network 

components. However, the functional roles of these intrinsic networks and the interactions among them 

(e.g., Fig. 10) and task/anti-task related networks (e.g., Figs. 8-9), as well as their temporal dynamics, 

during task performance are not sufficiently characterized at the current stage, which should be 

extensively explored in the future. In this sense, novel computational and statistical approaches to 

modeling network-level functional interactions and dynamics (Li et al. 2013) should be developed, 

validated and employed. We envision that the elucidation of such complex functional interaction and 

dynamics patterns within large scale networks, such as the hundreds of basis components in the learned 

dictionary in this work, would significantly advance our understanding of the functioning mechanisms of 

the human brain.        
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At the current stage, our methods were applied on the working memory task fMRI dataset, semantic 

decision making task fMRI dataset and the flanker event-related fMRI dataset. In the future, we plan to 

apply the methods on other publicly available task-based fMRI datasets such as the recently released 

Human Connectome Project datasets. Then, we will be able to represent and characterize potentially 

many other functional networks under different task performances. In addition, we plan to investigate the 

possibility of applying the proposed sparse representation framework on resting state fMRI datasets and 

potentially characterize those uncovered intrinsic networks. We predict that once the collection of those 

well-characterized functional networks are replicated and validated in independent datasets by different 

research labs, they can be used as comprehensive atlases of functional brain activities for many brain 

mapping applications, such as measuring functional connectivities and interactions during different task 

performances, in healthy human brains. In a longer term, those methodologies can be then applied in 

different brain disorders and conditions to potentially reveal the functions and dysfunctions of many brain 

disorders such as Alzheimer’s disease and Schizophrenia.       
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