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ABSTRACT

There have been several recent studied used sparse representation for fMRI signal analysis and
activation detection based on the assumptiondratc h v o0 x e | dsslineérlylédinposed dparsel
componentsPrevious studies have employed sparse coding to model functional networks in various
modalities and scalesThese prior contributionsnspired the explomtion of whether/how sparse
representation can be used to identify functional networks in a-wegelway and on the whole brain
scale This paper presents a novel, alternative methodotdggentifying multiple functional networks

via sparse representation of whblein taskbased fMRI signals. Our basic idea is that all fMRI signals
within the whole brain obnesubject are aggregated into a big data matrix, which is then factoriped int
an overcomplete dictionary basis matrix and a reference weight matrix via an effective online dictionary
learning algorithm.Our extensive experimental results have shown that this novel methodology can

uncover multiplefunctional networkghat can bewell characterized and interpretedgpatial, temporal



and frequencylomains based on current brain science knowlddggortantly, thesavell-characterized
functional network components are quite reproducible in different biaigeneral, our methodsffer a
novel, effective andunified solution to multipléMRI data analysigasksincluding activation detection,

de-activation detectiormndfunctional networkdentification
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1. INTRODUCTION

Taskbased fMRI has been widely used to identify brain regions that are functionally involved in specific
task performance, and has significantly advanced our understanding of functional localizékionthe
brain (Logothetis 2008;Friston, 200%. In the human brain mapping communigyvariety offMRI time
series analysimethods have been developed &gotivationmodeling anddetection, such as correlation
analysis(Bandettiniet al, 1993) general linear model (GLMJristonet al., 1994Worsleyet al., 1997)
principal component analysis (PCAAndersenet al., 1999) Markov random field (MRF) models
(Descombest al., 1998) mixture modelgHartvig and Jenser2000) independent component analysis
(ICA) (McKeown et al., 1998, wavelet algorithmgBullmore et al., 2003 Shimizu et al., 2004,
autoregressive spatial mod€oolrich et al., 2001) Bayesian approachéBowmanet al., 2008) and
empirical mean curve deogposition(Denget al., 2012 Among all of these computational methods, the
GLM (Friston et al., 1994;Worsley et al., 1997)is one ofthe most widely used methedue to its

effectiveness, simplicity, robustness and wide availability.

Recently,inspired by the successes of using sparse representation for signal and pattern analysis in the
machine learning and pattern recognition fieMaight et al., 2010)there have been several studibst
used sparse representation for fMRI signal analysigl activation detectio¢e.g.,Li et al., 2009;Lee et

al.,, 2011 Li et al., 2012;0ikonomouet al., 2012} ee et al., 2013 Abolghasemiet al., 2013 Lv et al.,



2013 based on the assumption thia componentefe ach voxel 6s f MRI signal
integation of those components linear. Actually, the human brain function intrinsically involves
multiple complex processes with population codes of neuronal actiy@ishausen 1996)Ishauserand

Field, 2004;Quiroga et al., 2008 In thebrain sciencdield, a variety ofresearctstudieshave supported

that when determining neuronal activity, sparse population coding of a set of neemmsmore
effective than independeexplaation (Daubehieset al., 2009)That is a sparse set of neurons encode
specific concepts rather than responding to the input independPatipechie®t al., 2009) Therefore

it is natural and weljustified to exploresparse representations to describe fMRI diggoathe brainlin
parallel significant amount of research efforts from the machine learning and pattern recognition fields
has been recently devoted to sparse representations of sighals and fRteote 2006; Huangand
Aviyente, 2006; Wright et al., 2008;Wright et al., 2010 Mairal et al., 2010;Yang et al., 201}, and
remarkable achievements have been nfiadbothcompact higHidelity representation of the sigrsahnd
effective extracton of meaningfulpatterns(Wright et al., 2010) However, despite recent successes of
using sparse representation for fMRI signal analysis and activation detection in the human brain mapping
field (e.g., Li et al., 2009 ee et al., 2011Li et al., 2012;0ikonomouet al., 2012;Lee et al., 2013;
Abolghasemiet al., 2013Lv et al., 2013}, it has been rarely explored whether/how sparse representation

of fMRI signals can betilized to infer functional networksvithin the whole braimat the voxel scale

To bridge the abovementioned gap,this paper, we present a novel, alternative methodolugh
employssparse representation of whdileain fMRI signals fofunctional networksdentification in task
based fMRI dataThe basic idea here is that we aggregate ahetlozens of thousasdof taskbased
fMRI signals within the whole braifrom onesubject irto a big data matrix, and factorize it by an cever
complete dictionary basis matrix and a reference weight matrianedfective online dictionary learning
algorithm (Mairal et al., 2@0). Our rationaleis that during task performance, there could be multiple,
e.g.,dozens or evehundreds of, functionally active networks that contribute to the fM&bd oxygen
level dependenfBOLD) signals of the whole braiff.he main objectives of his work are to exploréhe
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following three questions: Myhat could theseatomicfunctional networkde 2) what spatial, temporal
and frequency characteristiceuld those functionahetwork components exhihitand 3) how do they
contribute to theompositions oflozens othousands of fMRI signalwithin the whole brainGiven the
proven remarkable capability of sparse representation in uncovering meaningful patterns from large
amount of dataWright et al., 2010)we hypothesizethat sparse represtation of wholebrain fMRI
signals via dictionary learningcan simultaneouslyaddress the abovementioned three questions. In
particular,we hypothesize thahe identified functionalnetworkcomponerg can be further characterized
and interpretedby existing brain science knowledges well as by existingtructural and functional brain
atlasesTo test the above hypotheses,aan exampldrig. 1 illustrates ourationaleandthe computational
methodology.In Fig. 1, three exempladentified network components including the tasklated one
(Faraco et al., 2011yellow), the antitaskrelated ongor deactivation,Archeret al., 2003 Tomasiet

al., 20®) (blue), andhe default mode network (DMN)Raichle and Snyder, 200{fed), as well as their
overlapped areas including task + aask (pink), task + DMN (green), aftisk + DMN (cyan), and task

+ antitask + DMN (brown), are shown on thdlated cortical surfacelt is noted thathevisualizationon
original surface of Fig.1 is shownin Supplemental Figl3(l). It is shownthat these three network
components exhibit spatially distinct but overlapping distribution pattélinstrating that multiple
functionally active networks simultaneously contribute to the fMRI BOLD signals oftode brainand

that the online dictionary learning method has the great promiseomcurrently address téa

abovementioned threpiestions



Figure 1. lllustration of spatial distributions ofhreedictionary componentf interest(COI) onto the
inflated cortical surface.This illustration is based on a working memory tasked fMRI dataseFaraco

et al.,, 2011 Zhu et al., 2012)Thereare tak-relatedcomponent (yellow), antiask relatedcomponent
(blue) anddefaultmode network DMN) component (red)a-c) show different viewsf representing the
spatial distribution patterns of thethree network components(d) demonstrates the color scheme of
representingdifferent componentand their overlapsFor exampls the regons belonging to botlthe
antitask and DMNcomponerd are representedby cyan andthe greencolor representthe overlapped

areas othetask and DMNcomponerd

In general, he major novelties and contributions of this pager summarized ithree aspectg-irst, in
comparison with previous works of sparse representation of fMRI signals (Li et al., 28961 al.,
2011;Li et al., 2012 0ikonomouet al., 2012} eeet al., 2013Abolghasemket al., 2013Lv et al., 2013
our methodologgydematicallyconsiderghe wholebrain askbased fMRI signals with each subjeahd
aims to infer acomprehensiveollection of functional networkdn other words, we employ a bdpta
strategy (Manyika et al., 2011)that include a large number of fMRI signals to uncowaultiple

functioning brain networkgoncurrently Importantly, each fMRI signais sparsely represented by a



l inear combination of those f{whitlkdféeroannoveldternaterd wo r k
window to examine the spatiabmpositions ofmeaningfulfunctional brain networks Secondwe have
developed an effective computational pipeline to quantitatively characterize those uncovered functional
networks in spatial, temporal and freqag domainswhich can be potentially used as functional network
atlases for specific task performararefunctional scenarim the future This computationapipeline and

its resuls will not only demonstrate the effectiveness of sparse representatiwhotdbrain fMRI
signalsand its neuroscience meanjnigut alsooffer a novel approach to identifying and describing
functions of the brain. Thirdpur methodology provides a noyadffective and unifiedframeworkfor

multiple tasks in traditional fMRI data analygisludingactivation detection, dactivation detectiorand
functional network identification. Essentiallyhe datadriven discovered functional network components

via onlinedictionary learning algorithexcorrespond, to some extent, to differdeterminingfactors that

have generatd the fMRI BOLD signals.Although this paper focuses on the characterization and
interpretation of activation, dactivation and default modenetwork components, quantitative
characterizationof many other network components in the dataset used in this paper and in other
additionaltaskbasedMRI datasets willikely contributetod e e per under st astrudturmg o f

andfunctionin the futue.

2. MATERIALS AND METHODS

2.10verview

Fig. 2 summarizes theomputational pipelin®f identifying functional networlcomponerd via sparse
representation of wholerain fMRI signals First, the whole-brain fMRI signalsare sparsely represented
by usingonline dictionary larning and sparse coding metbods illustrated by the 400 learned atomic
dictionary components in Fig. 2&hat is, dozens of thousands of whblain fMRI signals can all be
effectively and sparselyepresented by linear combinations of these atadistionary components.

Second, we proposa novel framework for temporaifrequencycharacteristicsanalysis of network
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componertd to identify and selechetwork componentsf interest (COl)within the learneddictionary

For instance, these COls coddd either correlated or antiorrelated withhe task paradigm, and exhibit
similar frequency domain patterasthetime serieof task paradigmFigs. 2b2d showthe temporal time
series shapes and spatial distribution patteriisreéselectedCOls that orrespond to tasiEaraco et al.,
2011) antitask(Archeret al., 2003;Tomasiet al., 2006)and DMN (Raichle and Snyder, 200@gtwork
componery, respectively, and thedlictionarycomponent indices atgghlighted by the color circleis

Fig. 2a As mentioned in Section 1, this paper faesisn exploring these atomiCOls (considered as
functional networks hergBection 2.3)characterizing the spatial, temporal and frequency characteristics
of theseCOls (Section 2.4)andexamininghow theseCOQOls contribute to the compositions afl of the

fMRI signals withinawhole brain(Section 3)




Figure 2. Overview of the computational pipeline aflentifying functionalbrain networks via sparse
representation of wholerain fMRI signals.(a) An example of e learned sparse dictionary of 400
functional components (indexed by the horizontal axis). The vertical axis stands for the occurrence
frequency of each component in over 40,000 fMRI BOLD sigimais whole brainThe threedictionary
componets highlightedby yellow, blue and red circles correspotaddifferentfunctional networksThey

are: (b) taskrelated component in which the responseell follows the external blockased task
paradigm, (c) antiask relatedcomponentin which the respomswell follows the inverseof external
block-based task paradigrand (d) DMNcomponent. In each componenid) the corresponding signals
(colored curve) accompanied witlthe task stimulus (white curve) are shown in the pgmels Their
spatialdistributionsare also backrojected onto the volumetric images in the lower panel. Each voxel is

color-coded by the reference weight used in the spaggesentation

2.2 Dataset and Preprocessing

Two different taskbasedMRI datasetgblock designjand one eventelated fMRI datavereusedin this
paper The first dataset was usedthe test bed data tevelop and evaluateur sparse representation
approachs in Sections 2 and 3. The second dataset was used in Section b fodependent

reprodweibility study. For extensive evaluation, the third eveelated fMRI data was employed.

Dataset 1:In a working memory taskased fMRI egperiment under IRB approvaF#éraco et al., 2011

Zhu et al., 201p fMRI images of 15ubjects were scanned on a 3T GE Signa scatribe Bioimaging
Research CentdBIRC) of The University of GeorgidUGA). Briefly, acquisitionparameters are as
follows: 64x64 matrix, 4mm slice thickness, 220mm FOV, 30 slices, TR=1.5s, TE=25ms, ASSET=2
Each participant performed a modified version of dperational spanQSPAN task (3 block types:
OSPAN, Arithmetic, and Baselinéfraraco et al., 20)Iwhile fMRI datawas acquired. Preprocessing

stepsfor the fMRI dataare referred téaraccet al., 2011and Zhu et al., 2012



Dataset 2 In the semantic decision making tagh( et al, 2013, thefMRI scan included 8 on (task)

blocks (30 seconds) and 8 off (rest) blocks (15 seconds). Duringoedabck, ten participants were

serially presnted with ten picturegach for 3 seconjisand they made aamnimacy decision regarding

the image (i.e., living/nonliving). Button responses and response times reeoeded using a
magnetically shielded fods ut t on box i n t he klaselineconirgstavas udesl toh an d .
generate the semantic decision making activation. iRl scans were acquirezh the3T GE Signa

scanneiat UGA BIRCusing aT2*-weighted single shot echo planar imaging (EPI) sequence aligned to

the AGPC line with TE = 25 ms,TR = 1500 ms, 90° RF pulse, 30 interleaved slices, acquisition matrix

= 64x64, spacing = 0 mm, slighickness = 4 mm, FOV = 240 x 240 mm, and ASSET factor = 2.

Preprocessing step$ the fMRI dataare referred t&hu et al., 203.

Dataset 3: Twentysix righthanded adults (mean age: 28.1+8.5 years) participatiée ftanker event
related task fMRI study in New York University (NYU). During the fMRI scan, participants were
requested to respongea serie®f slow-paced Erikseflanker trials (intestrial interval (ITI) varied from

8s to 14s, 12s on average). In each trial, the direction the central arrow of five (e.g. < <was >)
responded by pushing buttonSMRI images were acquired on a reseattedicated Siemens Alleg&0

T scannelin NYU Center for Brain ImagingThe acquisition parameters are as follow: TR=2000 ms;
TE=30 ms; flip angle=80, 40 slices, matrix=64x64; FOV=192 mm; acquisition voxel size=3x3x4 mm.
Preprocessing includeslice timing correction, motio coriection, and spatial smoothing. More details
about task design, data acquisition and preprocess$itigs open fMRI datarereferedto Kelly et al.,

2008, Mennes et al., 2010 and Mennes et al., 2011.

2.3 SparseRepresentation ofWhole-Brain FMRI Signals



Our computational framework of sparse representatiavhofe-brainfMRI signalsis summarized in Fig.
3. Specifically, frst, for eachsingle subjecd s  bweaektract tasbkased fMRI signa onall voxels
within the whole brainThen,after normalizabn to zero mean and standard deviation pthe fMRI
signalsare arranged into dig signaldatamatrix Ya  (Fig. 38, wheren columnsare fMRI signals
from n voxelsandt is the fMRI volume numbefor time points) By using a publicly availableffective
online dictionary learning and sparse coding meithdairal et al., 201)) each fMRI signal vector i8 is
modeled as linear combination of atoms of a learnealsisdictionaryD (Figs.3b-3c), i.e, 0 $ |
andS=DI UwhereU i s ticters wemlt reatrik for sparse representation and each colunis the
correspondingeference weightector forO. Finally, we identify components of interes(€0Is), namely
functionalnetwork components this work by performing temporal anidlequency analysis of atdm
signal componers (Fig. 3b) in the learned dictiona. At the same time, we map each rowttre U
matrix back to the brain volunse&and examine their spatial distribution patterns, through which functional
network componentsr@ characterizednd modeledn brain volumes, as shown by the red and yellow
areas in Fig3c. At the conceptual level, the sparse representdtamework in Fig. 3can effectively
achieveboth compact higHidelity representation of thehole-brain fMRI signak (Fig. 3b)andeffective
extracton of meaningfulpatterns(Fig. 3c) (Donoho 2006; Huang and Aviyente, 2006; Wright et al.,
2008;Wright et al., 2010Mairal et al., 2010)yanget al., 2011)In comparison with previous works of
sparse representation of fMRI signals (e.g., Li et al., 2080gt al., 20111 et al., 2012,0ikonomouet
al., 2012;Lee et al., 2013;Abolghasemiet al., 2013), the major novelty here is that famework
holistically considers the wholarain taskbased fMRI signals by using a kilata strategyManyika et
al.,, 2011)and aims to infer a comprehensive collection of functional netwooksurrently based on
which their spatial, temporal and frequency cloéedstics are furtherquantitatively described and

modeled
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Figure 3. The computational pipelinef sparse representation whole-brain fMRI signals usingan

online dictionary learning approaclia) The wholebrain fMRI signals are aggregated into a big data
matrix, in which each row represents thwbole-brain fMRI BOLD data in one time point and each
column stands for the time series of one single vdgkgllllustration of the learned atomicationary,

each of which represents one functional network component. Three exemplar components of time series
are shown in the bottom panels. (c) Tdecomposedeference weightmatrices, each row of which
measures the weight parameter of each componetiteinvhole brainThat is, each row defines the

contribution of one component to the composition of the fMRI signals.

In our framework we aim to learn a meaningful and oeemplete dictionargxa (m>t, m<<p

(Mairal et al., 201D for the parse representation @&. For thetaskbased fMRIsignal set3
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OO O xa |, the empirical cost function is summarizedEq. (1) by considering the averadess

of regressiorof n signals.

ES$ i JEOM (1)

(e

With the aim of sparse representation usigthe loss function is defined in E¢2) with ad
regularization that yields to a sparse resolution of a n d h egulaizaton pasameter to teod

the regression residual and sparsity level.
aifoi aofs Os s @
As wemainly focus on the fluctuation shapef basis fMRIBOLD activitiesandaimto preventD from

arbitrarily large valueghecolumnsQ HQ F8 8 Q are constrainely Eq. (3).

67 Ofa &8 Q pBah QQ p (3)
S < B
0Qe -y Olg S & 4
aG

In brief, the whole problenof dictionary learningcan be rewritten as a matrix factorization problem in

Eq. (4) (Leeet al., 2007, and we use the effectivanline dictionary learning methedn (Mairal et al.,

2010 to derivethe atomicbasisdictionary for sparse representation of whbtain fMRI signalsHere,

we employ the same assumption as previous studies (Li et al., 2868t al., 2011Li et al., 2012;
Oikonomouet al., 2012} eeet al., 2013Abolghasemiet al., 2013) thathe componentsfe ach v ox el 0s

fMRI signal are sparse and the neural indign ofthose components linear.

One common use of sparse representation of signals with limited quantity of atoms from a learned
dictionary is to denoise. For oufMRI data analysispplication with the sparse representation, the most
relevant basisomponentf fMRI activities will be selected and linearly combined to represent the
original fMRI signals.With the same regularization in E@), we performsparse coding@f the signal

matrix using the fixed dictionary matr® in order to learn an optimizddmatrix for spare represetitan
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as shown in E((5).

cofd s s (5)
Eventually, thefMRI signal matrix from as u b j e c t brain wiihbe Fepresentetty a learned
dictionary matrix and a sparse coefficient maffig. 3). Here, @ch column otheU mat ri x cont ai
sparse weightsvhen interpreting eachfMRI signal with the atonic basissignals inthe dictionary.
Meanwhile,each row otheU matri x stores the infor nsahathaen of t h
references to certain dictionary atosmnNote that in order to learn tas&lated and antiask networks into
separate networks and avoid amask networks from merging into tasidated networks as negative
coefficients, we C o n sirt both diatianary ldadmieg atdl spad representgtians i t i\
With these decomposed dictionary components and itiigirenceweight parameters across the whole
brain for each subject, our next major task is to characterize and interpret them within a nearoscienc
context. In particular, the sparse representation and dictionary learning oftwainldMRI signals (Fig.
3) are performed for each individual brain separately and thus the spatial, temporal and frequency
correspondences of those characterized diatyoo@mponents, or components of interests (COIs), across

a group of subjects will be another major issu@vestigateas detailed in the next section

In our approach, the parametenot only regularizes the feature selection when reconstructing fMRI
signals, but also determines the sparsity and scale of network regions. In other wordjsftteesmall,

the network will be too coarse and involreich noise, while if_is too large, the network will be too
sparse. Currently, there is no goldeiitetion for selection of . In our results, the parametemwas
experimentally determined to ensure that the reconstructed networks exhibit meaningful level of sparsity

in terns of spatial distributions

24 Temporal-Frequency Analysis ofNetwork Components

13



In section 2.3we have obtained the network components by learning a dictionary from thelwhiole
fMRI signals for each subject. As each network component has its own time serieshsigs@ives as
the basis for sparsehgpresentinghe whole-brain fMRI signals,a natural question arises: what are the
neuroscience meanings of those hundredaetwork componentgFigs. 3b3c)? That is, we need to
characterize the structural amahctional profiles of thoseatomic componensignals toelucidate the
neuroscience meaningd these network componentsand potentially establish their correspondence
across a gr ounpltisdearshat Ll undertstandingagdantitatigecharacterization of all
of such hundreds dfictionarynetwork components are beyowdr current scope and capability, thus in
this paper ourresearch focus on the severalnetwork components within the learned dictiontoat are
either correlated or antiorrelated with te task paradigm and exhilsimilar frequency domain patterns
asthe frequency of tasperformanceparadigm Accordingly, we desigred a temporafrequency analysis
framework toidentify and selecsuch basic componentswvith more easily interpretable meanings, as

shown in he pipelingn Fig. 4a.
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Figure 4. (a) A computationapipeline of the tempordrequency analysis of network componenthich
is composed of sevesteps In this framework, the input is the learned dictionary compon@hia Fig.
3b) and the output is the selected wellaracterized componentsth their groupwise correspondence
More details of the sevestepsare explained as followgb) Examples of ime series signalof five
exemplarnetwork componentthat arevisualized as ble curves, which correspond tdhe stepl in the
pipelinein (a). Thetaskstimulus curve (yellowthe sameas(f)) is overlaid on th&eomponensignalfor
visualization purposeT hex-axis (horizontal)is the temporal points (in volumeshdthey-axis (vertical)
is thefMRI BOLD signalnormalized to {1, 1)for visualization (c) The frequency spectrum of the five
network componestvisualized as green cursjavhich correspond tdhe step2 in (a). Thex-axis is the

frequency,and the y-axis is the corrggnding power normalized to (0, 1). (d) The values of energy
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concentratiork;, corresponding tthe step3 in (a);, CorrelationE,,; correspondto the step4 in (a), The
component scor@ correspondso the step5 in (a) of each component. (e) Component selection result
where"V" means the component is selecssdCOIby our algorithnit pipelinefor furtheranalysis irthe
next stepwhich correspond tahe step6 in (a). (f) The gimulus curve of the task paradigvh daaset 1
corresponding tahe step7 in (a). Thex-axis is the temporal points (in volumeajdthe y-axis is the

altemation between task and bds®e blocks

In the diagranin Fig. 4a the "Network Components Signal®"is the txm matrix from thelastsectionas
the model input, where is the number of learned dictionary atoms (network components) iarttie
length of the fMRI time series signalhus the signal of thg-th network component iB;. Another
model input is the "Task Stimulus Paradigoarve TS, which is a vector of lengthbased orthe block-
based taskiesign(Faraco et al., 201 Zhu et al., 2012)as shown in Fig. 4f-or instance, for the working
memory task,ticanbe calculated from the cur{€ig. 4f) that the frequency of a cycle betwedie task

andthebaselings:

?— ———*5 T8iptof (6)
which is defined as the stimulus frequeftyinuus FOr other task paradigfe.g., that in Section 3.5he
stimulus frequencganbe calculated in a similar fashion, which is 1/(length of thedatdigmcycle).
Then for the j-th network component sign;, we canobtain its frequency spectruRD; by usingthe
fast Fouriertransfam on its signal, and calculatee energy concentratiol; of the stimuluscurve

frequency over all frequency ranges:
Op OO0 pd TOG ©)

where FDgsimuusj denotes the energy of the stimulus frequency in the speafuthe j-th network
component and FD;; denotes the energy of theth position in the spectrum of theth network
componentintuitively, a largerk;; suggests that this network component is more likely to be responsive
(eitherpositively or negativelyjo the task stimulus and should be considered as the task related or anti
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task related networkAlso, we can obtain the Pearsaorrelation between thsignal of each network
componen({Fig. 4b)with the stimulus curvéFig. 4f), which isdefined acor, ;.

0 | & iaRvYY (8)
Essentially E.or, ; measures the temporal similartigtweerthe componeid time series and the stimulus
curvewhich is convolved with hemodynamic response function (HRRarger valueof Ec,, j indicates
better correspondence between the component and the stifdotably, the widely used GLM model
(Friston et al., 1994; Worsley et al., 1997 the fMRI community usea similar principle in detecting
activated brain regions during a tagktso, the sign ofE.. j can tell whether the network component is
positively or negatively correlated with the stimulus curve, which will be usedferatifiate task related

or antitask relatedhetworkcomponents later.

As mentioned in Section 2.1, at the current stage, our work focuses on the network components that are
either correlated or antiorrelated with e task paradignlherefore we designed a straightforwarget
effectiveapproach to seldag the componentsf interestsbased on botlk andE.,,, and acomponent

scoring f un g-th nebwork cofhdonent théndefinecas:

0O Op O hHQQ §; ™ 9
Here both E;; and Ec.; are withinthe rangeof (0, 1) and a larger valuef G ( "Loy G ( "lis)desired to
select the COldt should be noted that we defined the scoring function separately for correlated and anti
correlated network componentsdthus each componenf the learned dictionarwill be eitherin the
s et Tarinlthg setd ( "LAs the positively correlatedomponents were found to have higher sgore
than anticorrelated components, defining them separately will enable us to select both types of
components in a morélexible and reliablemanner. A sample illustration of the distributsoof

components scorés two subjectss shown in Fig. 5.
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Figure 5. Distribution of E; (on the horizontal saxis) andabsolute value dE.; (onthe verticaly-axis)

of the taskrelated and antiask components from two randomly selected subjects (sulfjecaind#12).
ASubl10+0 indicates t h#0 thatam pasitivéytdrrelatefl with e stimup e ¢ t
curve, whad | ien diiScuabtleds t h e c o thaa arennegativig-corfetatechwitlstioeb j e c t

stimulus curveWe examined these distributiomsall of the 15 subjects and observed similar patterns.

In Fig. 5, each icon is a network component, and the componentmgasidhe top-right region (with
both largeE; and E.,,) are what we aim to selectsince we are currently interested in thasest
responsive components to the stimulus curve. However, as shown in fig.dstribution of the scase
acrossdifferent types of components and across different subjects is highigble Thus it is more
reasonable to individually and adaptivalglect the best components from each type in ealthidual
subject. Thusin this work, wedesigned andpplied a greedy iterative searching algorithm to best
partition the whole components space into the "selected" and "uesBlgrbups. For each tgp(task
relatedantitaskrelated of the components in each subject, we define the "selected" group starting from
the component wi t he.gt, thetophrighy dnessntFig. $/e thendteraie(through all
components which are sorted byithgcores, and at each stkpwe add the new components into the
"selected" groupthus forming two partitions [1.k] and k+1..m] of the total network components.
During thegreedy iterative searchings long as the following criterion is decreasititg iteration will be

continued:

18



(10)
Ofrg Or 3

In other words, waim to select the most suitabletwork components by minimizing the intgroup

distance while maximizing the intgroup distance, where the groups are defined by partitioning the

sorted components kith index.

2.5 Spatial Pattern Analysis of Network Components

The frequency and temporal characteristics of the task related ardskntelated network components

in the learned dictionary can lgeantitativelydescribed by Eqgs. (€9). In addition, thereferencaveight
parameter in each row of the matrix in Fag. for each network component can be projected back to the
volumetric fMRI image spacée.g., Fig. 3c)for the interpretation of their spatial distributions. this
way, the spatial distributions of network components in different brains can be comyptred a
template image space to verify their spatial overlagss well asto further determine their spatial

correspondencdsnore details in Section 3.2)

In addition to the taskelated and antiask related network components that are charaetkrin the
aboveSection2.4, it is interesting that there are also a varietinoinsic networks(e.g.,Fox and Raichle,

2007, Cohen et al., 2008an denHeuvel et al., 2008that areidentifiablein taskbased fMRI datakor
instance, there is a network component that clearly corresponds to the DMN (Raichle and Snyder, 2007),
as shown in Fig. 2dSince the temporal and frequency characteristics of the DMN have not been well
guantitatively descrilik we more rely on the spatial distribution patterns of the peak activities of DMN

on a template brain spadeok and Raichle, 2007TCohen et al., 2008;an denHeuvel et al., 2008), as
shown in Supplementaligure 1.We thenuse a spatiabverlapmetric to determinethe corresponding

DMN components across individuatairs.
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3. RESULTS

In this sectionwe designed a series of experiments to evaluate and valigat®vel computational
pipeline for identification of functional networks via sparse representation of ywhaile fMRI signals.
First, thetemporal and frequency propertiesseflected task related and ati@isk related COls from 15
subjects in the datasgktare presented in Section 3Afterwards the spatial distribution patterns of see
COls are detailed and interpreted in Section 3l2n he framework is extensively evaluated and
validated by comparisons with the ICA method (Section 3.3), by simonlatudies with grounttuth
(Section 3.4), and by an independent reproducibility studies in a separate dataset 2 (Sectfon 3.5).

additionalapplication of our method on everdiated fMRI data is explored in Section 3.6

3.1 Temporal and FrequencyProperties of COls from 15 Subjects

Based on the methodsd criterian Sectio 2.4, we have obtain&9 taskrelated an®5 antitaskrelated
network components from the learndigtionariesof all the 15 subjects in dataset 1. On average, two
netwok conponents of each type (tasilatedor antitaskrelated were selected for each subject, which
correspond to the bestatchedfunctional response to the task stimuingerms of frequency spectrum
and temporal correlatiofiegs. (7}(10)). The time seriesomponensignals, the frequency spectra and the
scores of the select&Ols of five randomlychosen subjects are listed in Figs/.6The result®f other

ten subjectare shown in Supplemental Bi@-3. Quantitatively, he average correlation of the sads of
taskrelated components with the stimulus cufieg. (8))over all 15 subjects is 0.585 (withe standard
deviation of 0.115), and their average energy concentratiotime frequency spect(&q. (7))is 40.9%
(with standard deviation of 7%J.he relatively high correlatiomand energy concentrations suggest that
these selected COls amell responsive to the stimulus curwehich is also eviderh the secondolumns

of Fig. 6 and Supplemental Fig. B.is thus natural to conjecture that thesel€@Correspond to the
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functional networks that are responsive to the working memory task and are potentially equivalent to the

traditional activated brain regions detected by the GLM method, which will be verified in Section 3.2.

Subject3 [l E;= 0.50C
#165 Ecorr=0.688
Subject3 B E=0.414
#381 Ecorr=0.524
Subject4 E= 0447
#161 Ecor=0619
Subject4 E:= 0464
#297 Ecor=0611
Subject5 E;= 0449
#075 Ecorr= 0690
Subject5 5 E= 0430
#367 § Ecorr= 0383
Subject6 [yt E;= 0400
#292 Ecor=0571
Subject6 |8 Ei= 0452
S Ecor = 0.700
Subjec? E:= 0449
#088 Ecorr= 0450
Subjec? E;= 0554
#182 Ecorr= 0.705

Figure 6. The selected taskelated network components from five randorohosen subjectwith a total
of 10 components. For each row in the figure, from the left to the right are: subject index and component

index, timeseries signal of that component with overlaid stimulus cyiveyellow), the frequency
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spectrum of that component, and the value of component scores, respelttigedyident that the COI

componentime seriesignals are well correlated with the stimulus curve.

Subject3 | E;=0.192
#310 Ecor=-0.29¢
Subject3 | E;=0.12¢9
#334 Ecor=-0.26F
Subjectd I E=0.192
#269 Ecor=0.-227
Subject5 g E=0.40C
#358 Ecorr =-0.504
Subject6 s E;=0.28¢9
#227 Ecor -0.388
Subject6 0 Ef =0.349
#311 Ecorr =-0.157
Subjec? E;=0.165
#179 Ecor=-0.379
Subjec? E;=0.19¢€
#369 Ecor=-0.328

Figure 7. The selected antask network componés from the same five subjects, withtotal of 8
componentskor each row in the figure, from the left to the right are: subject index and component index,
time series signal of that component with overlaid stimulus cfinvgellow), the frequency spectrum of

that component, and the value of component scoresatggly. It is evident that the COI component

time seriesignals are well anttorrelated with the stimulus curve.

Quantitatively, he average correlation ofdlsignal of anttask componentith the stimulus curve (Eg.
(8)) over all 15 subjects is0.348 (with standard deviation 00.014, and their average energy
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concentratioron the frequency spect(gq. (7)) is23.1% (with standard deviation of 8%).danbe seen

in Fig. 7 and Supplemental Fig. 3 that all the 15 subjects havenasthed anttask related functional
network components, suggesting that our methods can identify commetaskntietworks in the
response to stimulus paradigm from individual subjects. The relatively highaarglations and energy
concentrations suggest that theséected COls are highly amisponsive to the stimulus curve, which is

also evident in the second columns of Fig. 7 and Supplemental Fig. 3. We therefore conjecture that these
COls potentially correspond to the traditionaladgivated brain regions deted by the GLM method,

which will be evaluated in Section 3.2.

3.2 Spatial Distribution Patterns of COls

In this section, the identifie€Ols in Section3.1 will be further analyzedto elucidate their spatial
distributions based on the methodsSection 2.5 Specifically,the 29 taskrelated network components

from the learned dictionaries of all the 15 subjects in dataset 1 are mapping to the volumetric images.
Specifically, as the learning of coefficient matrix is constrainedmegative and # network region size

and scale are controlled by the parametén our experiment, we simply mapped the coefficients which
are A>00 without setting additional t hr eAsstaro | d . Th
example, m Figs.8a8d, we show two seleatitask related COlsf subject#1. The results foadditional

six differentsubjects are shown in SupplementalsF#5. In Figs. 8a8b, thetwo COls are colorcoded

with thereferenceweights of whole-brain voxels. We can see thedch networlcomponenis composed

of several Gaussiashapedpatterns ofreferenceweights This distributionpatternis consisten with
previous observationsf fMRI activation foci patterngFaraco et al., 20)1From Figs. 8¢-8d, we can
observethatthe signas of the selected networksvehigh correlation (aroun@.6~0.7) with the stimulus

curve (Eqg. (8))and its energieim the frequencyspectraaredominantlyconcentrate@n the frequency of
0.0148Hz This result supports our hypothesis in Eq.d46)l demonstrates the effectiveness and accuracy

of the datadriven online dictionary learning methodddiral et al., 201pin extracting meaningful basis

patterns for sparse representation of wiwkin fMRI signals Our results also provide additional

23



supporting evidence to the widalged GLM methodgistonet al., 1994Worsleyet al., 1997) that the
brainds functional activities could be very resp

matched frequency.
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Figure 8. (a)(b) Two sekcted task related COls of subject #1. (c) The corresponding temporal patterns of
the two components in (a) and (b). (d) The corresponding frequency distribution of the two components in
(a) and (b). (e) The groupise statistical map of all task relateshagponents from 15 subjects of dataset 1

in the MNI space. (f) Grouprise activation foci detected by FSL FEAT.
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Furthemore for each subjectince itstask related networkomponerd sharequite similar temporal and
frequency characteristi¢fig. 6), we merged then{the reference weight matrix &f Fig. 3c)into one
volumetricmapin orderto comprehensively elucidate their spatial distribution patterfier fegistering
and warpingthem intothe Montreal Neurologic InstituteMNI) templatespaceby the FSL FLIRT we
averagd the complete taskelatednetworks from a group of5 subjectsard visualizedthe averaga
statisticalatlasin Fig. 8e For comparisorpurpose the groupwise activation mapobtained byapplying
the FSL FEAT on the same workg memory tastbased fMRI datas also visualized in Fig8f. We can
see that thepatial distributios of task related networty our methods antthose of the activation fotiy
FSL FEAT arequite similar.Quantitatively, he overlap of color regions ffigs. 8e-8f account for86.8%
of the resultby our method(Fig. 8e)and 66.6% of resultby FSL FEAT (Fig. 8f). This relatively high
overlapdemonstratethat thetask related functionaletwork detected by our method is quite meaningful
and consistent with that by FSL FEABuggesting thevalidity and effectiveness of the dictionary
learning and sparse representation metliederibed in Section 2i8 uncovering meaningful functional
activity patterns from whoklbrain fMRI data Furthemore, the reasonably consistent teslated
functional networks in individual brains in Figs.-8a and Supplemental Fig.-5 as well as the
comparable grouvise activity patterns in Figs. &, suggest thabur COls selection methods in
Section 2.4 cold potentially serve as a novel, alternative approach to detectingbdask fMRI

activations.This important issue will be further explored in the Section 3.5.

Similarly, the reference weight matricdd Fig. 3c)of 25 antitaskrelatednetworkcomponents from the
learned dictionaries of all the 15 subjects in dataset 1 are mapped and examined on volumetric images
Specifically, n Figs.9a9d, we show the two selectantitask relatedghetworks ofsubject#6. The results

of additionalsix subjects & shown in Supplemental Eig67. Similar to those in Fig. 8heir spatial
distributiors are multiple Gaussiaishapedfoci. The temporaltime series signal®f these anti-task

componenthaverelatively strongPearsorcorrelatiors (-0.4~0.5) with the blockdesignstimulus curve
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as shownin Fig. 9c Also, their energiesn the frequency domain are dominantly concentratecon
0.018Hz, as shown in Fig. 9dAgain, this result further supports our hypothesis in Eq. (6) and
demonstrates the validity amdliability of the datadriven online dictionary learning methodddiral et

al.,, 2010 in extracting not only task related but also #ask related basis patns for sparse

representation of wholerain fMRI signals.

Figure 9. (a-b) Two identifiedanti-taskCOls of subject#6. (c) The correspondingme seriegpatterns of

the two components in (a) and (fiJ) The corresponding frequency distribution of the two components in
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