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ABSTRACT 

There have been several recent studies that used sparse representation for fMRI signal analysis and 

activation detection based on the assumption that each voxelôs fMRI signal is linearly composed of sparse 

components. Previous studies have employed sparse coding to model functional networks in various 

modalities and scales. These prior contributions inspired the exploration of whether/how sparse 

representation can be used to identify functional networks in a voxel-wise way and on the whole brain 

scale. This paper presents a novel, alternative methodology of identifying multiple functional networks 

via sparse representation of whole-brain task-based fMRI signals. Our basic idea is that all fMRI signals 

within the whole brain of one subject are aggregated into a big data matrix, which is then factorized into 

an over-complete dictionary basis matrix and a reference weight matrix via an effective online dictionary 

learning algorithm. Our extensive experimental results have shown that this novel methodology can 

uncover multiple functional networks that can be well characterized and interpreted in spatial, temporal 
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and frequency domains based on current brain science knowledge. Importantly, these well-characterized 

functional network components are quite reproducible in different brains. In general, our methods offer a 

novel, effective and unified solution to multiple fMRI data analysis tasks including activation detection, 

de-activation detection, and functional network identification.    

 

Keywords: Task-based fMRI, activation, intrinsic networks, connectivity.   

 

1. INTRODUCTION  

Task-based fMRI has been widely used to identify brain regions that are functionally involved in specific 

task performance, and has significantly advanced our understanding of functional localizations within the 

brain (Logothetis, 2008; Friston, 2009). In the human brain mapping community, a variety of fMRI time 

series analysis methods have been developed for activation modeling and detection, such as correlation 

analysis (Bandettini et al., 1993), general linear model (GLM) (Friston et al., 1994; Worsley et al., 1997), 

principal component analysis (PCA) (Andersen et al., 1999), Markov random field (MRF) models 

(Descombes et al., 1998), mixture models (Hartvig and Jensen, 2000), independent component analysis 

(ICA) (McKeown et al., 1998), wavelet algorithms (Bullmore et al., 2003; Shimizu et al., 2004), 

autoregressive spatial models (Woolrich et al., 2001), Bayesian approaches (Bowman et al., 2008), and 

empirical mean curve decomposition (Deng et al., 2012). Among all of these computational methods, the 

GLM (Friston et al., 1994; Worsley et al., 1997) is one of the most widely used methods due to its 

effectiveness, simplicity, robustness and wide availability.    

  

Recently, inspired by the successes of using sparse representation for signal and pattern analysis in the 

machine learning and pattern recognition fields (Wright et al., 2010), there have been several studies  that 

used sparse representation for fMRI signal analysis and activation detection (e.g., Li et al., 2009; Lee et 

al., 2011; Li et al., 2012; Oikonomou et al., 2012; Lee et al., 2013; Abolghasemi et al., 2013; Lv et al., 
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2013) based on the assumption that the components of each voxelôs fMRI signal are sparse and the neural 

integration of those components is linear. Actually, the human brain function intrinsically involves 

multiple complex processes with population codes of neuronal activities (Olshausen 1996; Olshausen and 

Field, 2004; Quiroga et al., 2008). In the brain science field, a variety of research studies have supported 

that when determining neuronal activity, sparse population coding of a set of neurons seems more 

effective than independent exploration (Daubechies et al., 2009). That is, a sparse set of neurons encode 

specific concepts rather than responding to the input independently (Daubechies et al., 2009). Therefore, 

it is natural and well-justified to explore sparse representations to describe fMRI signals of the brain. In 

parallel, significant amount of research efforts from the machine learning and pattern recognition fields 

has been recently devoted to sparse representations of signals and patterns (Donoho 2006; Huang and 

Aviyente, 2006; Wright et al., 2008; Wright et al., 2010; Mairal et al., 2010; Yang et al., 2011), and 

remarkable achievements have been made for both compact high-fidelity representation of the signals and 

effective extraction of meaningful patterns (Wright et al., 2010). However, despite recent successes of 

using sparse representation for fMRI signal analysis and activation detection in the human brain mapping 

field (e.g., Li et al., 2009; Lee et al., 2011; Li et al., 2012; Oikonomou et al., 2012; Lee et al., 2013; 

Abolghasemi et al., 2013; Lv et al., 2013), it has been rarely explored whether/how sparse representation 

of fMRI signals can be utilized to infer functional networks within the whole brain at the voxel scale.     

 

To bridge the abovementioned gap, in this paper, we present a novel, alternative methodology which 

employs sparse representation of whole-brain fMRI signals for functional networks identification in task-

based fMRI data. The basic idea here is that we aggregate all of the dozens of thousands of task-based 

fMRI signals within the whole brain from one subject into a big data matrix, and factorize it by an over-

complete dictionary basis matrix and a reference weight matrix via an effective online dictionary learning 

algorithm (Mairal et al., 2010). Our rationale is that during task performance, there could be multiple, 

e.g., dozens or even hundreds of, functionally active networks that contribute to the fMRI blood oxygen 

level dependent (BOLD) signals of the whole brain. The main objectives of this work are to explore the 
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following three questions: 1) what could these atomic functional networks be; 2) what spatial, temporal 

and frequency characteristics could those functional network components exhibit; and 3) how do they 

contribute to the compositions of dozens of thousands of fMRI signals within the whole brain. Given the 

proven remarkable capability of sparse representation in uncovering meaningful patterns from large 

amount of data (Wright et al., 2010), we hypothesize that sparse representation of whole-brain fMRI 

signals via dictionary learning can simultaneously address the abovementioned three questions. In 

particular, we hypothesize that the identified functional network components can be further characterized 

and interpreted by existing brain science knowledge, as well as by existing structural and functional brain 

atlases. To test the above hypotheses, as an example, Fig. 1 illustrates our rationale and the computational 

methodology. In Fig. 1, three exemplar identified network components including the task related one 

(Faraco et al., 2011) (yellow), the anti-task related one (or de-activation, Archer et al., 2003; Tomasi et 

al., 2006) (blue), and the default mode network (DMN) (Raichle and Snyder, 2007) (red), as well as their 

overlapped areas including task + anti-task (pink), task + DMN (green), anti-task + DMN (cyan), and task 

+ anti-task + DMN (brown), are shown on the inflated cortical surface. It is noted that the visualization on 

original surface of Fig. 1 is shown in Supplemental Fig. 13(I). It is shown that these three network 

components exhibit spatially distinct but overlapping distribution patterns, illustrating that multiple 

functionally active networks simultaneously contribute to the fMRI BOLD signals of the whole brain and 

that the online dictionary learning method has the great promise to concurrently address the 

abovementioned three questions.                          
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Figure 1. Illustration of spatial distributions of three dictionary components of interest (COI) onto the 

inflated cortical surface. This illustration is based on a working memory task-based fMRI dataset (Faraco 

et al., 2011; Zhu et al., 2012). There are task-related component (yellow), anti-task related component 

(blue) and default mode network (DMN) component (red). (a-c) show different views of representing the 

spatial distribution patterns of these three network components. (d) demonstrates the color scheme of 

representing different components and their overlaps. For examples, the regions belonging to both the 

anti-task and DMN components are represented by cyan, and the green color represents the overlapped 

areas of the task and DMN components. 

 

In general, the major novelties and contributions of this paper are summarized in three aspects. First, in 

comparison with previous works of sparse representation of fMRI signals (Li et al., 2009; Lee et al., 

2011; Li et al., 2012; Oikonomou et al., 2012; Lee et al., 2013; Abolghasemi et al., 2013; Lv et al., 2013), 

our methodology systematically considers the whole-brain task-based fMRI signals with each subject, and 

aims to infer a comprehensive collection of functional networks. In other words, we employ a big-data 

strategy (Manyika et al., 2011) that include a large number of fMRI signals to uncover multiple 

functioning brain networks concurrently. Importantly, each fMRI signal is sparsely represented by a 
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linear combination of those functioning network componentsô signals, which offers a novel, alternative 

window to examine the spatial compositions of meaningful functional brain networks. Second, we have 

developed an effective computational pipeline to quantitatively characterize those uncovered functional 

networks in spatial, temporal and frequency domains, which can be potentially used as functional network 

atlases for specific task performance or functional scenario in the future. This computational pipeline and 

its results will not only demonstrate the effectiveness of sparse representation of whole-brain fMRI 

signals and its neuroscience meaning, but also offer a novel approach to identifying and describing 

functions of the brain. Third, our methodology provides a novel, effective and unified framework for 

multiple tasks in traditional fMRI data analysis including activation detection, de-activation detection, and 

functional network identification. Essentially, the data-driven discovered functional network components 

via online dictionary learning algorithms correspond, to some extent, to different determining factors that 

have generated the fMRI BOLD signals. Although this paper focuses on the characterization and 

interpretation of activation, de-activation and default mode network components, quantitative 

characterization of many other network components in the dataset used in this paper and in other 

additional task-based fMRI datasets will likely contribute to deeper understanding of the brainôs structure 

and function in the future. 

 

2. MATERIALS AND METHODS 

2.1 Overview 

Fig. 2 summarizes the computational pipeline of identifying functional network components via sparse 

representation of whole-brain fMRI signals. First, the whole-brain fMRI signals are sparsely represented 

by using online dictionary learning and sparse coding methods, as illustrated by the 400 learned atomic 

dictionary components in Fig. 2a. That is, dozens of thousands of whole-brain fMRI signals can all be 

effectively and sparsely represented by linear combinations of these atomic dictionary components. 

Second, we propose a novel framework for temporal-frequency characteristics analysis of network 
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components to identify and select network components of interest (COI) within the learned dictionary. 

For instance, these COIs could be either correlated or anti-correlated with the task paradigm, and exhibit 

similar frequency domain patterns as the time series of task paradigm. Figs. 2b-2d show the temporal time 

series shapes and spatial distribution patterns of three selected COIs that correspond to task (Faraco et al., 

2011), anti-task (Archer et al., 2003; Tomasi et al., 2006) and DMN (Raichle and Snyder, 2007) network 

components, respectively, and their dictionary component indices are highlighted by the color circles in 

Fig. 2a. As mentioned in Section 1, this paper focuses on exploring these atomic COIs (considered as 

functional networks here) (Section 2.3), characterizing the spatial, temporal and frequency characteristics 

of these COIs (Section 2.4), and examining how these COIs contribute to the compositions of all of the 

fMRI signals within a whole brain (Section 3).       
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Figure 2. Overview of the computational pipeline of identifying functional brain networks via sparse 

representation of whole-brain fMRI signals. (a) An example of the learned sparse dictionary of 400 

functional components (indexed by the horizontal axis). The vertical axis stands for the occurrence 

frequency of each component in over 40,000 fMRI BOLD signals in a whole brain. The three dictionary 

components highlighted by yellow, blue and red circles correspond to different functional networks. They 

are: (b) task related component in which the response well follows the external block-based task 

paradigm, (c) anti-task related component in which the response well follows the inverse of external 

block-based task paradigm, and (d) DMN component. In each component (b-d), the corresponding signals 

(colored curves) accompanied with the task stimulus (white curve) are shown in the top panels. Their 

spatial distributions are also back-projected onto the volumetric images in the lower panel. Each voxel is 

color-coded by the reference weight used in the sparse representation. 

 

2.2 Dataset and Preprocessing 

Two different task-based fMRI datasets (block design) and one event-related fMRI data were used in this 

paper. The first dataset was used as the test bed data to develop and evaluate our sparse representation 

approaches in Sections 2 and 3. The second dataset was used in Section 3.5 for an independent 

reproducibility study.  For extensive evaluation, the third event-related fMRI data was employed. 

  

Dataset 1: In a working memory task-based fMRI experiment under IRB approval (Faraco et al., 2011; 

Zhu et al., 2012), fMRI images of 15 subjects were scanned on a 3T GE Signa scanner at the Bioimaging 

Research Center (BIRC) of The University of Georgia (UGA). Briefly, acquisition parameters are as 

follows:  64×64 matrix, 4mm slice thickness, 220mm FOV, 30 slices, TR=1.5s, TE=25ms, ASSET=2. 

Each participant performed a modified version of the operational span (OSPAN) task (3 block types: 

OSPAN, Arithmetic, and Baseline) (Faraco et al., 2011) while fMRI data was acquired. Preprocessing 

steps for the fMRI data are referred to Faraco et al., 2011 and Zhu et al., 2012.  
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Dataset 2: In the semantic decision making task (Zhu et al., 2013), the fMRI scan included 8 on (task) 

blocks (30 seconds) and 8 off (rest) blocks (15 seconds). During each on-block, ten participants were 

serially presented with ten pictures (each for 3 seconds), and they made an animacy decision regarding 

the image (i.e., living/nonliving). Button responses and response times were recorded using a 

magnetically shielded four-button box in the participantôs hand. The task-baseline contrast was used to 

generate the semantic decision making activation map. FMRI scans were acquired on the 3T GE Signa 

scanner at UGA BIRC using a T2*-weighted single shot echo planar imaging (EPI) sequence aligned to 

the AC-PC line, with TE = 25 ms, TR = 1500 ms, 90° RF pulse, 30 interleaved slices, acquisition matrix 

= 64x64, spacing = 0 mm, slice thickness = 4 mm, FOV = 240 x 240 mm, and ASSET factor = 2. 

Preprocessing steps of the fMRI data are referred to Zhu et al., 2013.   

 

Dataset 3: Twenty-six right-handed adults (mean age: 28.1±8.5 years) participated in the flanker event-

related task fMRI study in New York University (NYU). During the fMRI scan, participants were 

requested to response to a series of slow-paced Eriksen flanker trials (inter-trial interval (ITI) varied from 

8s to 14s, 12s on average). In each trial, the direction the central arrow of five (e.g. < < > > >) was 

responded by pushing buttons.  FMRI images were acquired on a research-dedicated Siemens Allegra 3.0 

T scanner in NYU Center for Brain Imaging. The acquisition parameters are as follow: TR=2000 ms; 

TE=30 ms; flip angle=80, 40 slices, matrix=64×64; FOV=192 mm; acquisition voxel size=3×3×4 mm. 

Preprocessing includes slice timing correction, motion correction, and spatial smoothing. More details 

about task design, data acquisition and preprocessing of this open fMRI data are referred to Kelly et al., 

2008, Mennes et al., 2010 and Mennes et al., 2011. 

 

2.3 Sparse Representation of Whole-Brain FMRI Signals 
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Our computational framework of sparse representation of whole-brain fMRI signals is summarized in Fig. 

3. Specifically, first, for each single subjectôs brain, we extract task-based fMRI signals on all voxels 

within the whole brain. Then, after normalization to zero mean and standard deviation of 1, the fMRI 

signals are arranged into a big signal data matrix Sⱦᴙ  (Fig. 3a), where n columns are fMRI signals 

from n voxels and t is the fMRI volume number (or time points). By using a publicly available effective 

online dictionary learning and sparse coding method (Mairal et al., 2010), each fMRI signal vector in S is 

modeled as a linear combination of atoms of a learned basis dictionary D (Figs. 3b-3c), i.e., Ó $ ɻ 

and S=DĬŬ, where Ŭ is the coefficient weight matrix for sparse representation and each column ɻ is the 

corresponding reference weight vector for Ó. Finally, we identify components of interests (COIs), namely 

functional network components in this work, by performing temporal and frequency analysis of atomic 

signal components (Fig. 3b) in the learned dictionary D. At the same time, we map each row in the Ŭ 

matrix back to the brain volumes and examine their spatial distribution patterns, through which functional 

network components are characterized and modeled on brain volumes, as shown by the red and yellow 

areas in Fig. 3c. At the conceptual level, the sparse representation framework in Fig. 3 can effectively 

achieve both compact high-fidelity representation of the whole-brain fMRI signals (Fig. 3b) and effective 

extraction of meaningful patterns (Fig. 3c) (Donoho 2006; Huang and Aviyente, 2006; Wright et al., 

2008; Wright et al., 2010; Mairal et al., 2010; Yang et al., 2011). In comparison with previous works of 

sparse representation of fMRI signals (e.g., Li et al., 2009; Lee et al., 2011; Li et al., 2012; Oikonomou et 

al., 2012; Lee et al., 2013; Abolghasemi et al., 2013), the major novelty here is that our framework 

holistically considers the whole-brain task-based fMRI signals by using a big-data strategy (Manyika et 

al., 2011) and aims to infer a comprehensive collection of functional networks concurrently, based on 

which their spatial, temporal and frequency characteristics are further quantitatively described and 

modeled.     
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Figure 3. The computational pipeline of sparse representation of whole-brain fMRI signals using an 

online dictionary learning approach. (a) The whole-brain fMRI signals are aggregated into a big data 

matrix, in which each row represents the whole-brain fMRI BOLD data in one time point and each 

column stands for the time series of one single voxel. (b) Illustration of the learned atomic dictionary, 

each of which represents one functional network component. Three exemplar components of time series 

are shown in the bottom panels. (c) The decomposed reference weight matrices, each row of which 

measures the weight parameter of each component in the whole brain. That is, each row defines the 

contribution of one component to the composition of the fMRI signals.        

 

In our framework, we aim to learn a meaningful and over-complete dictionary $צᴙ  (m>t, m<<n) 

(Mairal et al., 2010) for the sparse representation of S. For the task-based fMRI signal set 3
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ÓȟÓȟȣÓצᴙ , the empirical cost function is summarized in Eq. (1) by considering the average loss 

of regression of n signals. 

Æ$ ḯ
ρ

Î
ЉÓȟ$  (1) 

With the aim of sparse representation using D, the loss function is defined in Eq. (2) with a ǎ 

regularization that yields to a sparse resolution of ɻ, and here ɚ is a regularization parameter to trade-off 

the regression residual and sparsity level. 

ǎίȟὈ ḯ άὭὲ
ᴙ

ρ

ς
ȿȿί Ὀ‌ȿȿ ‗ȿȿ‌ȿȿ (2) 

As we mainly focus on the fluctuation shapes of basis fMRI BOLD activities and aim to prevent D from 

arbitrarily large values, the columns ὨȟὨȟȣȣὨ  are constrained by Eq. (3). 

ὅḯ Ὀ‭ᴙ    ίȢὸȢ   Ὦ ρȟȣάȟ ὨὨ ρ (3) 

άὭὲ
ȟ ᴙ  

ρ

ς
ȿȿὛ Ὀ‌ȿȿ ‗ȿȿ‌ȿȿȟ  (4) 

In brief, the whole problem of dictionary learning can be rewritten as a matrix factorization problem in 

Eq. (4) (Lee et al., 2007), and we use the effective online dictionary learning methods in (Mairal et al., 

2010) to derive the atomic basis dictionary for sparse representation of whole-brain fMRI signals. Here, 

we employ the same assumption as previous studies (Li et al., 2009; Lee et al., 2011; Li et al., 2012; 

Oikonomou et al., 2012; Lee et al., 2013; Abolghasemi et al., 2013) that the components of each voxelôs 

fMRI signal are sparse and the neural integration of those components is linear.  

 

One common use of sparse representation of signals with limited quantity of atoms from a learned 

dictionary is to de-noise. For our fMRI data analysis application, with the sparse representation, the most 

relevant basis components of fMRI activities will be selected and linearly combined to represent the 

original fMRI signals. With the same regularization in Eq. (4), we perform sparse coding of the signal 

matrix using the fixed dictionary matrix D in order to learn an optimized Ŭ matrix for spare representation 
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as shown in Eq. (5).    

                 άὭὲ
ᴙ

ρ

ς
ȿȿί Ὀ‌ȿȿ ‗ȿȿ‌ȿȿ  

 

(5) 

Eventually, the fMRI signal matrix from a subjectôs whole brain will be represented by a learned 

dictionary matrix and a sparse coefficient matrix (Fig. 3). Here, each column of the Ŭ matrix contains the 

sparse weights when interpreting each fMRI signal with the atomic basis signals in the dictionary. 

Meanwhile, each row of the Ŭ matrix stores the information of the voxel spatial distributions that have 

references to certain dictionary atoms. Note that in order to learn task-related and anti-task networks into 

separate networks and avoid anti-task networks from merging into task-related networks as negative 

coefficients, we constrained the Ŭ matrix positive in both dictionary learning and sparse representation. 

With these decomposed dictionary components and their reference weight parameters across the whole 

brain for each subject, our next major task is to characterize and interpret them within a neuroscience 

context. In particular, the sparse representation and dictionary learning of whole-brain fMRI signals (Fig. 

3) are performed for each individual brain separately and thus the spatial, temporal and frequency 

correspondences of those characterized dictionary components, or components of interests (COIs), across 

a group of subjects will be another major issue to investigate, as detailed in the next section. 

 

In our approach, the parameter ‗ not only regularizes the feature selection when reconstructing fMRI 

signals, but also determines the sparsity and scale of network regions. In other word, if the ‗ is too small, 

the network will be too coarse and involve much noise, while if ‗ is too large, the network will be too 

sparse. Currently, there is no golden criterion for selection of ‗. In our results, the parameter ‗ was 

experimentally determined to ensure that the reconstructed networks exhibit meaningful level of sparsity 

in terms of spatial distributions.  

 

2.4 Temporal-Frequency Analysis of Network Components 
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In section 2.3, we have obtained the network components by learning a dictionary from the whole-brain 

fMRI signals for each subject. As each network component has its own time series signal that serves as 

the basis for sparsely representing the whole-brain fMRI signals, a natural question arises: what are the 

neuroscience meanings of those hundreds of network components (Figs. 3b-3c)? That is, we need to 

characterize the structural and functional profiles of those atomic component signals to elucidate the 

neuroscience meanings of these network components, and potentially establish their correspondences 

across a group of subjectsô brains. It is clear that full understanding and quantitative characterization of all 

of such hundreds of dictionary network components are beyond our current scope and capability, thus in 

this paper, our research focus is on the several network components within the learned dictionary that are 

either correlated or anti-correlated with the task paradigm and exhibit similar frequency domain patterns 

as the frequency of task performance paradigm. Accordingly, we designed a temporal-frequency analysis 

framework to identify and select such basic components with more easily interpretable meanings, as 

shown in the pipeline in Fig. 4a.  
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Figure 4. (a) A computational pipeline of the temporal-frequency analysis of network components, which 

is composed of seven steps. In this framework, the input is the learned dictionary components (D in Fig. 

3b) and the output is the selected well-characterized components with their group-wise correspondence. 

More details of the seven steps are explained as follows. (b) Examples of time series signals of five 

exemplar network components that are visualized as blue curves, which correspond to the step 1 in the 

pipeline in (a). The task stimulus curve (yellow, the same as (f)) is overlaid on the component signal for 

visualization purpose. The x-axis (horizontal) is the temporal points (in volumes), and the y-axis (vertical) 

is the fMRI BOLD signal normalized to (-1, 1) for visualization. (c) The frequency spectrum of the five 

network components visualized as green curves, which correspond to the step 2 in (a). The x-axis is the 

frequency, and the y-axis is the corresponding power normalized to (0, 1). (d) The values of energy 
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concentration Ef, corresponding to the step 3 in (a); Correlation Ecorr corresponds to the step 4 in (a); The 

component score ū  corresponds to the step 5 in (a) of each component. (e) Component selection result, 

where "V" means the component is selected as COI by our algorithmic pipeline for further analysis in the 

next step, which correspond to the step 6 in (a). (f) The stimulus curve of the task paradigm of dataset 1, 

corresponding to the step 7 in (a). The x-axis is the temporal points (in volumes), and the y-axis is the 

alternation between task and base-line blocks. 

 

In the diagram in Fig. 4a, the "Network Components Signals" D is the t×m matrix from the last section as 

the model input, where m is the number of learned dictionary atoms (network components) and t is the 

length of the fMRI time series signal. Thus, the signal of the j-th network component is Dj. Another 

model input is the "Task Stimulus Paradigm" curve TS, which is a vector of length t based on the block-

based task design (Faraco et al., 2011; Zhu et al., 2012), as shown in Fig. 4f. For instance, for the working 

memory task, it can be calculated from the curve (Fig. 4f) that the frequency of a cycle between the task 

and the baseline is: 

      
ᶻ

Ⱦ
ᶻ
Ȣ
πȢπρτψὌᾀ              (6) 

which is defined as the stimulus frequency Frstimulus. For other task paradigm (e.g., that in Section 3.5), the 

stimulus frequency can be calculated in a similar fashion, which is 1/(length of the full paradigm cycle). 

Then, for the j-th network component signal Dj, we can obtain its frequency spectrum FDj by using the 

fast Fourier transform on its signal, and calculate the energy concentration Ef,j of the stimulus curve 

frequency over all frequency ranges: 

Ὁȟ ὊὈ ȟȾ ὊὈȟ (7) 

where FDFrstimulus,j denotes the energy of the stimulus frequency in the spectrum of the j-th network 

component, and FDi,j denotes the energy of the i-th position in the spectrum of the j-th network 

component. Intuitively, a larger Ef,j suggests that this network component is more likely to be responsive 

(either positively or negatively) to the task stimulus and should be considered as the task related or anti-
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task related network. Also, we can obtain the Pearson correlation between the signal of each network 

component (Fig. 4b) with the stimulus curve (Fig. 4f), which is defined as Ecorr, j: 

Ὁ ȟ ὧέὶὶὈȟὝὛ (8) 

Essentially, Ecorr, j measures the temporal similarity between the componentôs time series and the stimulus 

curve which is convolved with hemodynamic response function (HRF). A larger value of Ecorr, j indicates 

better correspondence between the component and the stimulus. Notably, the widely used GLM model 

(Friston et al., 1994; Worsley et al., 1997) in the fMRI community uses a similar principle in detecting 

activated brain regions during a task. Also, the sign of Ecorr, j can tell whether the network component is 

positively or negatively correlated with the stimulus curve, which will be used to differentiate task related 

or anti-task related network components later.  

 

As mentioned in Section 2.1, at the current stage, our work focuses on the network components that are 

either correlated or anti-correlated with the task paradigm. Therefore, we designed a straightforward, yet 

effective approach to selecting the components of interests based on both Ef and Ecorr, and a component 

scoring function ū(Ŀ) of the j-th network component is then defined as: 

 Ὀ Ὁȟ Ὁ ȟȟὭὪ Ὁ ȟ π  

 Ὀ Ὁȟ Ὁ ȟȟὭὪ Ὁ ȟ π (9) 

Here, both Ef,j and Ecorr,j are within the range of (0, 1) and a larger value of ū(Ŀ)
+
 or ū(Ŀ)

-
 is desired to 

select the COIs. It should be noted that we defined the scoring function separately for correlated and anti-

correlated network components, and thus each component of the learned dictionary will be either in the 

set ū(Ŀ)
+
 or in the set ū(Ŀ)

-
. As the positively correlated components were found to have higher scores 

than anti-correlated components, defining them separately will enable us to select both types of 

components in a more flexible and reliable manner. A sample illustration of the distributions of 

components scores in two subjects is shown in Fig. 5.  
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Figure 5. Distribution of Ef,j (on the horizontal x-axis) and absolute value of Ecorr,j (on the vertical y-axis) 

of the task-related and anti-task components from two randomly selected subjects (subject #10 and #12). 

ñSub10+ò indicates the components from subject #10 that are positively-correlated with the stimulus 

curve, while ñSub10-ò indicates the components from subject 10 that are negatively-correlated with the 

stimulus curve. We examined these distributions in all of the 15 subjects and observed similar patterns.  

 

In Fig. 5, each icon is a network component, and the components residing in the top-right region (with 

both large Ef and Ecorr) are what we aim to select, since we are currently interested in those most 

responsive components to the stimulus curve. However, as shown in Fig. 5, the distribution of the scores 

across different types of components and across different subjects is highly variable. Thus, it is more 

reasonable to individually and adaptively select the best components from each type in each individual 

subject. Thus, in this work, we designed and applied a greedy iterative searching algorithm to best 

partition the whole components space into the "selected" and "unselected" groups. For each type (task 

related/anti-task related) of the components in each subject, we define the "selected" group starting from 

the component with the highest score ū(Ŀ), e.g., the top right ones in Fig. 5. We then iterate through all 

components which are sorted by their scores, and at each step k, we add the new components into the 

"selected" group, thus forming two partitions [1...k] and [k+1...m] of the total network components. 

During the greedy iterative searching, as long as the following criterion is decreasing, the iteration will be 

continued: 
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Ὁȟȣ Ὁȟ ȣ  

(10) 

In other words, we aim to select the most suitable network components by minimizing the intra-group 

distance while maximizing the inter-group distance, where the groups are defined by partitioning the 

sorted components at k-th index.  

 

2.5 Spatial Pattern Analysis of Network Components 

The frequency and temporal characteristics of the task related and anti-task related network components 

in the learned dictionary can be quantitatively described by Eqs. (6)-(9). In addition, the reference weight 

parameter in each row of the matrix in Fig. 3c for each network component can be projected back to the 

volumetric fMRI image space (e.g., Fig. 3c) for the interpretation of their spatial distributions. In this 

way, the spatial distributions of network components in different brains can be compared within a 

template image space to verify their spatial overlaps, as well as to further determine their spatial 

correspondences (more details in Section 3.2).       

 

In addition to the task related and anti-task related network components that are characterized in the 

above Section 2.4, it is interesting that there are also a variety of intrinsic networks (e.g., Fox and Raichle, 

2007; Cohen et al., 2008; van den Heuvel et al., 2008) that are identifiable in task-based fMRI data. For 

instance, there is a network component that clearly corresponds to the DMN (Raichle and Snyder, 2007), 

as shown in Fig. 2d. Since the temporal and frequency characteristics of the DMN have not been well 

quantitatively described, we more rely on the spatial distribution patterns of the peak activities of DMN 

on a template brain space (Fox and Raichle, 2007; Cohen et al., 2008; van den Heuvel et al., 2008), as 

shown in Supplemental Figure 1. We then use a spatial overlap metric to determine the corresponding 

DMN components across individual brains.  
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3. RESULTS 

In this section, we designed a series of experiments to evaluate and validate the novel computational 

pipeline for identification of functional networks via sparse representation of whole-brain fMRI signals. 

First, the temporal and frequency properties of selected task related and anti-task related COIs from 15 

subjects in the dataset 1 are presented in Section 3.1. Afterwards, the spatial distribution patterns of these 

COIs are detailed and interpreted in Section 3.2. Then the framework is extensively evaluated and 

validated by comparisons with the ICA method (Section 3.3), by simulation studies with ground-truth 

(Section 3.4), and by an independent reproducibility studies in a separate dataset 2 (Section 3.5). An 

additional application of our method on event-related fMRI data is explored in Section 3.6 

 

3.1 Temporal and Frequency Properties of COIs from 15 Subjects 

Based on the methods and criteria in Section 2.4, we have obtained 29 task related and 25 anti-task related 

network components from the learned dictionaries of all the 15 subjects in dataset 1. On average, two 

network components of each type (task related or anti-task related) were selected for each subject, which 

correspond to the best-matched functional response to the task stimulus in terms of frequency spectrum 

and temporal correlation (Eqs. (7)-(10)). The time series component signals, the frequency spectra and the 

scores of the selected COIs of five randomly-chosen subjects are listed in Figs. 6-7. The results of other 

ten subjects are shown in Supplemental Figs. 2-3. Quantitatively, the average correlation of the signals of 

task related components with the stimulus curve (Eq. (8)) over all 15 subjects is 0.585 (with the standard 

deviation of 0.115), and their average energy concentration on the frequency spectra (Eq. (7)) is 40.9% 

(with standard deviation of 7%). The relatively high correlations and energy concentrations suggest that 

these selected COIs are well responsive to the stimulus curve, which is also evident in the second columns 

of Fig. 6 and Supplemental Fig. 2. It is thus natural to conjecture that these COIs correspond to the 
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functional networks that are responsive to the working memory task and are potentially equivalent to the 

traditional activated brain regions detected by the GLM method, which will be verified in Section 3.2.       

 

Figure 6. The selected task related network components from five randomly-chosen subjects with a total 

of 10 components. For each row in the figure, from the left to the right are: subject index and component 

index, time series signal of that component with overlaid stimulus curve (in yellow), the frequency 

Subject3                Ef = 0.500 

   #165                         Ecorr = 0.688 

 

Subject3                Ef = 0.414 

   #381                         Ecorr = 0.524 

 

Subject4                Ef = 0.447 

   #161                         Ecorr = 0.619 

 

Subject4                Ef = 0.464 

   #297                         Ecorr = 0.611 

 

Subject5                Ef = 0.449 

   #075                         Ecorr = 0.690 

 

Subject5                Ef = 0.430 

   #367                         Ecorr = 0.383 

 

Subject6                Ef = 0.400 

   #292                         Ecorr = 0.571 

 

Subject6                Ef = 0.452 

   #314                         Ecorr = 0.700 

 

Subject7                Ef = 0.449 

   #088                         Ecorr = 0.450 

 

Subject7                Ef = 0.554 

   #182                         Ecorr = 0.705 
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spectrum of that component, and the value of component scores, respectively. It is evident that the COI 

component time series signals are well correlated with the stimulus curve.   

 

Figure 7. The selected anti-task network components from the same five subjects, with a total of 8 

components. For each row in the figure, from the left to the right are: subject index and component index, 

time series signal of that component with overlaid stimulus curve (in yellow), the frequency spectrum of 

that component, and the value of component scores, respectively. It is evident that the COI component 

time series signals are well anti-correlated with the stimulus curve. 

 

Quantitatively, the average correlation of the signal of anti-task component with the stimulus curve (Eq. 

(8)) over all 15 subjects is -0.348 (with standard deviation of 0.014), and their average energy 

Subject3                  Ef =0.192 

   #310                          Ecorr =-0.299 

 

Subject3                  Ef =0.129 

   #334                          Ecorr =-0.265 

 

Subject4                  Ef =0.192 

   #269                          Ecorr =0.-227 

 

Subject5                  Ef =0.400 

   #358                          Ecorr =-0.504 

 

Subject6                  Ef =0.289 

   #227                           Ecorr  -0.388 

 

Subject6                  Ef =0.349 

   #311                          Ecorr =-0.157 

 

Subject7                  Ef =0.165 

   #179                          Ecorr =-0.379 

 

Subject7                  Ef =0.196 

   #369                          Ecorr =-0.328 
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concentration on the frequency spectra (Eq. (7)) is 23.1% (with standard deviation of 8%). It can be seen 

in Fig. 7 and Supplemental Fig. 3 that all the 15 subjects have well-matched anti-task related functional 

network components, suggesting that our methods can identify common anti-task networks in the 

response to stimulus paradigm from individual subjects. The relatively high anti-correlations and energy 

concentrations suggest that these selected COIs are highly anti-responsive to the stimulus curve, which is 

also evident in the second columns of Fig. 7 and Supplemental Fig. 3. We therefore conjecture that these 

COIs potentially correspond to the traditional de-activated brain regions detected by the GLM method, 

which will be evaluated in Section 3.2.  

 

3.2 Spatial Distribution Patterns of COIs 

In this section, the identified COIs in Section 3.1 will be further analyzed to elucidate their spatial 

distributions based on the methods in Section 2.5. Specifically, the 29 task related network components 

from the learned dictionaries of all the 15 subjects in dataset 1 are mapping to the volumetric images. 

Specifically, as the learning of coefficient matrix is constrained non-negative and the network region size 

and scale are controlled by the parameter ‗, in our experiment, we simply mapped the coefficients which 

are ñ>0ò without setting additional threshold. This also applies to the following overlap analysis. As an 

example, in Figs. 8a-8d, we show two selected task related COIs of subject #1. The results for additional 

six different subjects are shown in Supplemental Figs. 4-5. In Figs. 8a-8b, the two COIs are color-coded 

with the reference weights of whole-brain voxels. We can see that each network component is composed 

of several Gaussian-shaped patterns of reference weights. This distribution pattern is consistent with 

previous observations of fMRI activation foci patterns (Faraco et al., 2011). From Figs. 8c-8d, we can 

observe that the signals of the selected networks have high correlation (around 0.6~0.7) with the stimulus 

curve (Eq. (8)), and its energies in the frequency spectra are dominantly concentrated on the frequency of 

0.0148Hz. This result supports our hypothesis in Eq. (6) and demonstrates the effectiveness and accuracy 

of the data-driven online dictionary learning methods (Mairal et al., 2010) in extracting meaningful basis 

patterns for sparse representation of whole-brain fMRI signals. Our results also provide additional 
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supporting evidence to the widely-used GLM methods (Friston et al., 1994; Worsley et al., 1997) that the 

brainôs functional activities could be very responsive to the specific task paradigm, e.g., the exactly 

matched frequency.  

 

Figure 8. (a)-(b) Two selected task related COIs of subject #1. (c) The corresponding temporal patterns of 

the two components in (a) and (b). (d) The corresponding frequency distribution of the two components in 

(a) and (b). (e) The group-wise statistical map of all task related components from 15 subjects of dataset 1 

in the MNI space. (f) Group-wise activation foci detected by FSL FEAT. 
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Furthermore, for each subject, since its task related network components share quite similar temporal and 

frequency characteristics (Fig. 6), we merged them (the reference weight matrix of Ŭ, Fig. 3c) into one 

volumetric map in order to comprehensively elucidate their spatial distribution patterns. After registering 

and warping them into the Montreal Neurologic Institute (MNI) template space by the FSL FLIRT, we 

averaged the complete task related networks from a group of 15 subjects and visualized the averaged 

statistical atlas in Fig. 8e. For comparison purpose, the group-wise activation map obtained by applying 

the FSL FEAT on the same working memory task-based fMRI data is also visualized in Fig. 8f. We can 

see that the spatial distributions of task related network by our methods and those of the activation foci by 

FSL FEAT are quite similar. Quantitatively, the overlap of color regions in Figs. 8e-8f account for 86.8% 

of the result by our method (Fig. 8e) and 66.6% of result by FSL FEAT (Fig. 8f). This relatively high 

overlap demonstrates that the task related functional network detected by our method is quite meaningful 

and consistent with that by FSL FEAT, suggesting the validity and effectiveness of the dictionary 

learning and sparse representation methods described in Section 2.3 in uncovering meaningful functional 

activity patterns from whole-brain fMRI data. Furthermore, the reasonably consistent task-related 

functional networks in individual brains in Figs. 8a-8b and Supplemental Fig. 4-5, as well as the 

comparable group-wise activity patterns in Figs. 8e-8f, suggest that our COIs selection methods in 

Section 2.4 could potentially serve as a novel, alternative approach to detecting task-based fMRI 

activations. This important issue will be further explored in the Section 3.5.       

 

Similarly, the reference weight matrices (Ŭ, Fig. 3c) of 25 anti-task related network components from the 

learned dictionaries of all the 15 subjects in dataset 1 are mapped and examined on volumetric images. 

Specifically, in Figs. 9a-9d, we show the two selected anti-task related networks of subject #6. The results 

of additional six subjects are shown in Supplemental Figs. 6-7. Similar to those in Fig. 8, their spatial 

distributions are multiple Gaussian-shaped foci. The temporal time series signals of these anti-task 

components have relatively strong Pearson correlations (-0.4~-0.5) with the block-design stimulus curve, 
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as shown in Fig. 9c. Also, their energies in the frequency domains are dominantly concentrated on 

0.0148Hz, as shown in Fig. 9d. Again, this result further supports our hypothesis in Eq. (6) and 

demonstrates the validity and reliability of the data-driven online dictionary learning methods (Mairal et 

al., 2010) in extracting not only task related but also anti-task related basis patterns for sparse 

representation of whole-brain fMRI signals.  

 

Figure 9. (a-b) Two identified anti-task COIs of subject #6. (c) The corresponding time series patterns of 

the two components in (a) and (b). (d) The corresponding frequency distribution of the two components in 


