
1 
 

Sparse Representation of HCP Grayordinate Data Reveals 

Novel Functional Architecture of Cerebral Cortex 

Xi Jiang
1
, Xiang Li

1
, Jinglei Lv

2,1
, Tuo Zhang

2,1
, Shu Zhang

1
, Lei Guo

2
, Tianming Liu

1*
 

1
Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and 

Bioimaging Research Center, The University of Georgia, Athens, GA; 
2
School of Automation, 

Northwestern Polytechnical University, Xi‟an, P. R. China. *Corresponding author: telephone: 1-

706-542-3478; Fax: 1-706-542-2996; Email: tliu@cs.uga.edu 

 

Short title: Functional Difference between Gyri and Sulci 

Keywords: Task-based heterogeneous functional region, cortical gyri and sulci, grayordinate, 

task-based fMRI, sparse representation 

 

Abstract 

The recently publicly released Human Connectome Project (HCP) grayordinate-based fMRI data 

not only has high spatial and temporal resolution, but also offers group-corresponding fMRI 

signals across a large population for the first time in the brain imaging field, thus significantly 

facilitating mapping the functional brain architecture with much higher resolution and in a group-

wise fashion. In this paper, we adopt the HCP grayordinate task-based fMRI (tfMRI) data to 

systematically identify and characterize task-based heterogeneous functional regions (THFRs) on 

cortical surface, i.e., the regions that are activated during multiple tasks conditions and contribute 

to multiple task-evoked systems during a specific task performance, and to assess the spatial 

patterns of identified THFRs on cortical gyri and sulci by applying a computational framework of 

sparse representations of grayordinate brain tfMRI signals. Experimental results demonstrate that 
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both consistent task-evoked networks and intrinsic connectivity networks across all subjects and 

tasks in HCP grayordinate data are effectively and robustly reconstructed via the proposed sparse 

representation framework. Moreover, it is found that there are relatively consistent THFRs 

locating at bilateral parietal lobe, frontal lobe, and visual association cortices across all subjects 

and tasks. Particularly, those identified THFRs locate significantly more on gyral regions than on 

sulcal regions. These results based on sparse representation of HCP grayordinate data reveal 

novel functional architecture of cortical gyri and sulci, and might provide a foundation to better 

understand functional mechanisms of the human cerebral cortex in the future. 

Keywords: Task-based heterogeneous functional region, cortical gyri and sulci, grayordinate, 

task-based fMRI, sparse representation 

 

Introduction 

Studying human brain function using in-vivo functional neuroimaging techniques such as 

functional magnetic resonance imaging (fMRI) (Logothetis, 2008; Friston, 2009) has received 

significant interest in the brain mapping field. Specifically, task-based fMRI (tfMRI) has been 

widely adopted to identify brain regions that are functionally involved in a specific task 

performance (Logothetis 2008; Friston 2009). To advance the understanding of functional 

localizations and interactions within the human brain based on fMRI data, there have been 

increasing efforts in acquiring and processing fMRI data with higher spatial/temporal resolution 

and correspondence across subjects and populations to better characterize the regularity and 

variability of human brain function (Van Essen et al., 2013). One of such efforts is the recently 

publicly released Human Connectome Project (HCP) grayordinate-based fMRI data (Van Essen 

et al., 2013; Smith et al., 2013; Barch et al., 2013; Glasser et al., 2013). The HCP grayordinate 

data models the gray matter as combined cortical surface vertices and subcortical voxels across 

subjects in the standard MNI152 space (Smith et al., 2013; Glasser et al., 2013). The HCP fMRI 
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(including tfMRI and resting state fMRI) data in the standard grayordinate space not only has 

both much higher spatial and temporal resolution, but also offers group-corresponding fMRI 

signals across a large population for the first time in the brain imaging field. In short, the HCP 

grayordinate fMRI data significantly facilitates the mapping of functional brain architecture with 

much higher resolution and in a group-wise fashion, without the need to average signals within 

brain regions and across subjects (Mikl et al., 2008; Yue et al., 2010). 

 

Based on tfMRI data, various studies (e.g., Huettel et al., 2004; Fox et al., 2005; Dosenbach et al., 

2006; Bullmore and Sporns 2009; Lv et al., 2014a; Lv et al., 2014b) have demonstrated that there 

exist multiple concurrent functional networks that are spatially distributed across brain regions 

and are involved and interacting with each other. This phenomenon is in agreement with studies 

in the neuroscience field which have been widely reported and argued that there are certain brain 

regions and networks that exhibit strong functional heterogeneity and diversity (Duncan 2010; 

Fedorenko et al., 2013; Pessoa 2012; Kanwisher 2010; Anderson et al., 2013; Gazzaniga 2004). 

That is, a brain region might be involved in multiple functional processes simultaneously, and a 

functional network might recruit heterogeneous brain regions. For instances, it was argued that 

“neural basis of emotion and cognition should be viewed as governed less by properties that are 

intrinsic to specific sites and more by interactions among multiple brain regions” (Pessoa 2012) 

and that “areas of the brain that have been associated with language processing appear to be 

recruited across other cognitive domains” (Gazzaniga 2004). In short, identifying and 

characterizing such meaningful task-based heterogeneous functional regions (THFRs) on cerebral 

cortex, i.e., the cortical regions that are activated during multiple tasks conditions and contribute 

to multiple task-evoked systems during a specific task performance, could be important to 

understanding the functional architecture of human cerebral cortex. However, those meaningful 

THFRs with complex temporal patterns due to the complex composition of involved multiple 

functional networks/processes might have been underestimated by traditional approaches which 
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merely consider individual tfMRI signals based on model-driven subtraction procedures (Lv et al., 

2014a; Lv et al., 2014b). 

 

The highly convoluted cortical folding, which is composed of convex gyri and concave sulci, is 

one of the most prominent features of human cerebral cortex (Rakic 1988; Welker 1990; Barron 

1950). In recent years, there has been increasing interest in human brain mapping from both 

micro- and macro- scale to investigate the possible structural/functional differences between gyri 

and sulci, and several interesting findings have been reported (Nie et al., 2012; Takahashi et al., 

2012; Chen et al., 2013; Zhang et al., 2014; Zeng et al., 2014; Deng et al., 2014). For instances, a 

recent micro-scale study (Zeng et al., 2014) based on recently released Allen Mouse Brain Atlas 

demonstrated that the cerebellum gyri and sulci of rodent brains are significantly different in both 

axonal connectivity and gene expression patterns. For macro-scale data analysis, our recent 

studies (Nie et al., 2012; Chen et al., 2013) demonstrated that the termination of streamline fibers 

derived from diffusion magnetic resonance imaging (dMRI) (e.g., diffusion tensor imaging (DTI) 

and high angular resolution diffusion imaging (HARDI)) concentrate on gyrus in human, 

chimpanzee, and macaque brains. This phenomenon was also observed in another analysis on 

human fetus brain (Takahashi et al., 2012). Another recent study (Zhang et al., 2014) identified 

and characterized the U-shapes of streamline fibers derived from dMRI (e.g., DTI, HARDI, and 

diffusion spectrum imaging (DSI)), and reported that most of the U-shaped streamline fibers 

connect neighboring cortical gyri and course along sulci in human, chimpanzee, and macaque 

brains. Moreover, inspired by those structural connectivity findings, our recent study (Deng et al., 

2014) demonstrated that the functional connectivity is strong between gyral-gyral regions, weak 

between sulcal-sulcal regions, and moderate between gyral-sulcal regions based on resting state 

fMRI data. However, the functional brain characteristics (e.g., the possible distribution difference 

of THFRs in this study) of cortical gyral/sulcal regions during a specific task performance based 

on tfMRI data are largely unknown. 
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Motivated by the above-mentioned reasons and based on the high-quality HCP grayordinate 

tfMRI data, this study aims to identify and characterize the meaningful THFRs on cortical surface 

during a specific task performance, and to assess the possible distribution difference of identified 

THFRs on cortical gyral and sulcal regions. The recently publicly released HCP tfMRI data in the 

standard grayordinate space (Van Essen et al., 2013; Glasser et al., 2013; Barch et al., 2013) is 

particularly suitable for this study due to the following three reasons. 1) It is well demonstrated 

(e.g., Van Essen et al., 2013; Smith et al., 2013; Glasser et al., 2013) that it is of great importance 

to analyze cortical neuroimaging data with surface constraint information since the convoluted 

cortical sheet and its geometry information is better represented in 2D surface space than in 

commonly adopted 3D volume space. 2) The HCP grayordinate tfMRI data can sufficiently 

differentiate gyral/sulcal regions and relatively reliably map the tfMRI time series on cortical 

gyral and sulcal regions. While for the commonly used tfMRI data in 3D volume space, the 

possible functionally distinct regions across gyral blades or sulcal banks are only separated by a 

few voxels (millimeters). It is possible that the tfMRI time series from functionally distinct 

gyral/sulcal regions are mixed when performing 3D volumetric smoothing processing and thus 

inaccurate for succeeding analysis (Glasser et al., 2013). 3) The HCP grayordinate tfMRI data has 

both high spatial and temporal resolution than the commonly used tfMRI data, and the spatial 

correspondence of the standard grayordinate tfMRI data is relatively more precise than aligned 

3D volume data across different subjects (Glasser et al., 2013), and the associated tfMRI signals 

of grayordinates also have relatively precise correspondence across subjects, which is suitable for 

cross-subject comparison and group-wise analysis. In short, using HCP grayordinate-based tfMRI 

data will significantly benefit us to identify THFRs reliably and assess their spatial patterns on 

cortical gyri and sulci accurately in this study. 
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In general, our contributions in this work are three fold: 1) We identify and characterize 

meaningful THFRs via our recent computational framework (Lv et al., 2014a; Lv et al., 2014b) of 

sparse representations of whole-brain tfMRI signals via an effective online dictionary learning 

algorithm (Mairal et al., 2010). The rationales of adopting sparse representation of whole-brain 

tfMRI signals to identify meaningful functional networks are explained in two fold. First, based 

on the argument that a brain region might be involved in multiple functional processes 

simultaneously (Fedorenko et al., 2013; Duncan 2010; Pessoa 2012; Kanwisher 2010; Anderson 

et al., 2013; Gazzaniga 2004), its tfMRI blood oxygen level dependent (BOLD) signal could be 

composed of various components (functional networks) simultaneously. Second, given that 

dictionary learning and sparse representation approaches have been successfully adopted in 

machine learning and pattern recognition fields to both represent signals accurately and 

compactly and extract meaningful patterns effectively (e.g., Wright et al., 2010), there have been 

several recent successes of adopting dictionary learning and sparse representation for brain fMRI 

signal analysis and activation/network detection under the premise that each fMRI signal‟s 

components are sparse and linearly neural integrated (e.g., Lee et al., 2011; Oikonomou et al., 

2012; Abolghasemi et al., 2013; Lv et al., 2014a; Lv et al., 2014b). Specifically, our recent works 

(Lv et al., 2014a; Lv et al., 2014b) successfully performed sparse representation of whole-brain 

fMRI signals at voxel scale to infer a comprehensive collection of functional networks in the 

whole brain concurrently, to characterize those functional networks via spatial and temporal 

patterns, to assess the composition contributions of those functional networks to whole-brain 

fMRI signals, and to measure the spatial overlap patterns among functional networks. A critical 

difference between the dictionary learning/sparse representation approach and other 

decomposition approaches (e.g., independent component analysis (ICA) (McKeown et al., 1998)) 

is that the sparse representation does not explicitly assume the independence of fMRI time series 

among different functional components, while ICA does. It is more appropriate to explore the 

THFRs with concurrent functional processes/networks based on the sparse representation-based 
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components in this study. 2) We apply our computational framework on the recently publicly 

released HCP grayordinate tfMRI data (Van Essen et al., 2013; Glasser et al., 2013; Barch et al., 

2013), making the results relatively reliable, reproducible, and comparable for other studies. 3) It 

is the first time (as far as we know) to assess the spatial patterns of task-based heterogeneous 

functional regions on cortical gyri and sulci, the results of which could provide a foundation for 

future exploration of functional architecture of the human cerebral cortex. 

 

The manuscript is organized as follows. We first briefly describe HCP grayordinate-based tfMRI 

data and the associated minimal preprocessing pipelines (Glasser et al., 2013). In the methods, we 

first identify a comprehensive collection of functional networks of each subject during specific 

task performances via the recently developed computational framework (Lv et al., 2014a; Lv et 

al., 2014b) of sparse representations of grayordinate brain tfMRI signals. Then, we identify and 

quantitatively characterize the meaningful task-evoked networks and intrinsic connectivity 

networks in spatial and/or temporal domains. Finally, we identify the task-based heterogeneous 

functional regions (THFRs) involved in multiple functional networks, and assess their spatial 

patterns on cortical gyri/sulci. Experimental results and discussion and conclusion are also 

presented. 

 

Materials and Methods 

‘Grayordinate’ Data Acquisition and Preprocessing 

We adopt the high-quality task-based fMRI (tfMRI) data from the Human Connectome Project 

(HCP) (first quarter (Q1) release) (Van Essen et al., 2013; Barch et al., 2013) in this study. HCP 

provides publicly available and easy-to-use multi-modality MRI neuroimaging datasets for multi-

modal analysis of brain structure, connectivity, and function, as well as comparisons across 

subjects. Specifically, the HCP tfMRI datasets include seven different task paradigms (emotion, 
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gambling, language, motor, relational, social, and working memory) which are adopted or 

designed to identify core functional nodes across a wide range of cerebral cortex, thus can be 

viewed as a comprehensive and systematic mapping of core functional nodes and functional 

networks across subjects (Barch et al., 2013). The detailed designs of the seven task paradigms 

are referred to in (Barch et al., 2013). 

 

There are 68 subjects in the Q1 release of HCP tfMRI datasets (Van Essen et al., 2013; Barch et 

al., 2013). The acquisition parameters of tfMRI data are as follows:  90×104 matrix, 220mm FOV, 

72 slices, TR=0.72s, TE=33.1ms, flip angle = 52°, BW =2290 Hz/Px, in-plane FOV = 208 × 180 

mm, 2.0 mm isotropic voxels (Barch et al., 2013). We adopt the publicly released preprocessed 

tfMRI data after the minimal preprocessing pipelines which are especially defined for high spatial 

and temporal resolution of HCP datasets (Glasser et al., 2013). The minimal preprocessing 

pipelines mainly include spatial artifacts and distortions removal, cortical surfaces generation, 

within-subject cross-modal registration, cross-subject registration to standard volume and surface 

spaces, and generation of a CIFTI format of preprocessed data in the standard grayordinate space 

(Glasser et al., 2013). In brief, gray matter is modeled as combined cortical surface vertices and 

subcortical voxels, and the term “grayordinates” is adopted to describe the spatial dimension of 

such combined coordinate system. The standard grayordinate space means that the cortical 

surface mesh and subcortical volume parcels are both in the MNI standard space (Fig. 1a). There 

are 91,282 maximally aligned grayordinates in total (including the gray matter sampled at about 

60k surface vertices in the standard 2 mm average vertex spacing on the cortical surface and 

about 30k standard 2 mm voxels in subcortical regions) across all subjects and data modalities 

(Glasser et al., 2013). The grayordinate-based tfMRI data is represented as a 2D matrix in CIFTI 

format, in which one dimension represents the standard grayordinates (spatial information) which 

have correspondence across subjects and the other dimension represents the tfMRI time series 

(Fig. 1b) (Barch et al., 2013; Glasser et al., 2013). 
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Sparse Representation of Grayordinate-based Whole-brain TfMRI Signals 

We perform dictionary learning and sparse representation of grayordinate-based whole-brain 

tfMRI data to obtain a comprehensive collection of dictionary components (functional networks) 

in the whole brain for each subject in each task data via our recently developed computational 

framework (Lv et al., 2014a; Lv et al., 2014b). All variables used in this section are summarized 

in Supplemental Table 1. As illustrated in Fig. 1, for each subject in each task data, first, we 

extract tfMRI signals of whole-brain grayordinates (Fig. 1a). After normalizing to zero mean and 

standard deviation of 1, all tfMRI signals are aggregated into a 2D signal matrix 

 1,..., t n

n R  X x x  (Fig.1b), where t is the tfMRI time points and n columns are n tfMRI 

signals extracted from n grayordinates. Then X is factorized into an over-complete dictionary 

basis matrix 1[ ,..., ] t k

k R  D d d  (Fig.1c, k is the dictionary component size) and a sparse 

coefficient weight matrix 1[ ,..., ] k n

n R  α α α  (Fig.1c) via an effective online dictionary 

learning algorithm (Mairal et al., 2010), in which the tfMRI signal vector ix  (i=1,...n) in i-th 

column of X is approximately modeled as i i x D α , where iα  (i=1,...n) is the i-th column of 

α. Specifically, each dictionary component can be viewed as a functional network from brain 

science perspective, i.e., the time series vector id  (i=1,...k) in i-th column of D represents the 

functional BOLD (blood-oxygen-level dependent) activities of i-th functional network (the blue 

curves in Figs.1e-1f), while id ‟s corresponding sparse coefficient weight vector 
iα  (i=1,...k) in i-

th row of α can be mapped back to the cortical surface to obtain the cortical spatial pattern of the 

functional network (Figs.1e-1f). At the conceptual level, the computational framework of sparse 

representation can not only accurately and compactly represent tfMRI signals, but also effectively 

identify a comprehensive collection of functional networks whose temporal ( id ) and spatial (
iα ) 
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patterns can be quantitatively assessed (as detailed in „Identification of Functional Networks in 

Sparse Representation‟). 

 

Fig. 1. Sparse representation of grayordinate-based whole-brain tfMRI signals. (a): The cortical surface of 

an example subject in the MNI152 standard grayordinate space. Four example cortical vertices 

(grayordinates) are highlighted by four different colors (red, blue, green and orange). (b): The grayordinate-

based tfMRI data of the subject in (a). It is represented as a 2D matrix X, in which each row represents the 

standard grayordinates (spatial information) and each column represents the tfMRI time series. Four 

corresponding tfMRI signals of the four example grayordinates in (a) are represented as straight lines by 

the same color. (c): Sparse representation of X as dictionary D × sparse coefficient weight matrix α. (d)-(f): 

Illustrations of D and α. The blue bars in (d) show dictionary components (indexed horizontally) and the 

number of grayordinates that each dictionary component contains by counting the number of non-zero 

elements in each row of α (vertical height). (e)-(f) show spatial distribution map on the cortical surface 

(highlighted by blue) and temporal time series (blue curve) of two example dictionary components, 

respectively. 

 

We calculate D and α as follows. For sparse representation of signal matrix 
t nR X , we aim to 

learn an effective over-complete dictionary 
t kR D  which satisfies the constraint that k>t and 

k<<n (Mairal et al., 2010). Specifically, the empirical cost function ( )nf D  of 
t nR X  

considering the average loss of regression to all n signal vectors using D is 
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where the loss function  ,x D  is defined as the optimal value of sparse representation: 
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α
x D x Dα α . Note that the value of  ,x D should be small if signal x  

is reasonably well sparse represented by D. The 1l  regularization is used to yield a sparse 

resolution of α . λ is a regularization parameter between regression residual and sparsity level. 

Moreover, we have the constraint to prevent the elements in D from being arbitrarily large, 

 . . 1,.. , 1t k T

i iC R s t i k    D d d  (2) 

So the problem of minimizing Eq. (1) is rewritten as a matrix factorization problem: 

2

1,1,

1
min

2k n FC R


 
 

D α
X Dα α  (3) 

We adopt the effective online dictionary learning algorithm and the associated publicly released 

online dictionary learning toolbox (Mairal et al., 2010) to solve Eq. (3) and to learn the dictionary 

D. We briefly demonstrate the online dictionary learning approaches to solve Eq. (3) as follows. 

The core idea is that the two variables D and α in Eq. (3) are alternated and minimized over one 

while keeping the other one fixed. Specifically, we define signal training set as samples of a 

distribution  p x . mD  is defined as the updated dictionary at the iteration time m. 0D  is the 

initial dictionary and is randomly initialized from x . At the number of iterations m, for one 

element mx  drawn from  p x  at a time in stochastic gradient descent, the least angle regression 

(LARS)-Lasso algorithm (Mairal et al., 2010) is used to compute the decomposition mα  of mx  

based on the dictionary 1mD  obtained at the previous iteration m-1. At the same time, the 

dictionary 1mD  is updated as mD  by minimizing over Eq. (2) the function in Eq. (1), where mα   

is computed during previous step. The block-coordinate descent with warm starts algorithm is 
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used for dictionary update (Mairal et al., 2010). It has been proven that the iterations of dictionary 

update can achieve convergence to learn an optimal D. More detailed equations and solutions of 

Eq. (3) are referred to (Mairal et al., 2010). Once D is learned and fixed in Eq. (3), the sparse 

representation based on the learned D can be solved as an 
1l -regularized linear least-squares 

problem to learn an optimized α (Mairal et al., 2010). We select the value of regularization 

parameter λ and dictionary size k via experimental results based on the criterion of group-wise 

consistency of the inferred functional components across individual subjects (Lv et al., 2014a; Lv 

et al., 2014b). More details are in the supplemental materials. 

 

Identification of Functional Networks in Sparse Representation 

Once we perform dictionary learning and sparse representation of tfMRI signals to obtain a 

collection of dictionary components for each subject in each task data, the next step is to identify 

and quantitatively characterize the meaningful functional networks (including both task-evoked 

networks and intrinsic connectivity networks) from the dictionary components as many as 

possible for each subject in each task data based on current brain science knowledge, and to seek 

their correspondences across individual subjects. Specifically, we identify the task-evoked 

networks from the dictionary components for each subject in each tfMRI data as follows. After 

extensive visual inspection, it is found that certain networks (dictionary components) have similar 

spatial and temporal patterns compared with the activation maps derived from traditional general 

linear model (GLM) (Friston et al., 1994) (Fig. 2 and Supplemental Fig. 2). In this way, we adopt 

the traditional GLM to perform task activation detection on tfMRI data via FSL FEAT software. 

The resulting activation maps under specific task contrast designs as well as the input task 

contrast paradigm curves in traditional GLM can be viewed as the references to identify and 

characterize task-evoked networks in sparse representation. Similar to the methods in (Lv et al., 

2014a; Lv et al., 2014b), for i-th dictionary component, we not only measure the temporal 
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similarity (defined as Pearson's correlation coefficient) between its temporal vector id  (blue 

curve in Fig. 2a-2b) and each task contrast paradigm curve (black curve in Fig. 2a-2b), but also 

measure the spatial similarity between its spatial pattern 
iα  and the corresponding activation map 

obtained by GLM (Fig. 2a). The spatial similarity is defined as the spatial pattern overlap rate R 

between the dictionary component‟s spatial pattern (S) and the GLM-derived activation map (T) 

on cortical surface: 

( , )
S T

R S T
T


  (4) 

Note that we firstly convert S and T from continuous values to discrete labels (all values larger 

than 0 are labeled as 1, and others are labeled as 0) and then calculate the spatial overlap rate 

using Eq. (4). For each subject, we select the top ten candidate dictionary components which have 

high spatial similarity with corresponding GLM-derived activation map and have high temporal 

similarity with corresponding task contrast paradigm curve, respectively using the same methods 

in (Lv et al., 2014a; Lv et al., 2014b). Each component with high sum of value in spatial and 

temporal similarity is further examined by a group of seven experts separately to determine the 

final component with the best match of both spatial and temporal patterns with GLM based on the 

agreement reached by a voting procedure of all experts. Moreover, for a specific task data, we 

examine the group consistency of each identified meaningful task-evoked network across all 

subjects by comparing the spatial and temporal patterns between group-averaged identified 

meaningful task-evoked networks and activation maps derived from group GLM (Fig. 2b), and 

only those consistent dictionary components across subjects are retained as identified task-evoked 

networks in the specific task data. More details are in (Lv et al., 2014a; Lv et al., 2014b). Our 

rationale is that since temporal and spatial patterns provide crucial and complementary 

information of functional BOLD activities and neuroanatomic distributions of a functional 

network, respectively, each identified meaningful task-evoked network in sparse representation 
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should have both high temporal similarity with the task contrast paradigm curve and high spatial 

similarity with the activation map obtained from traditional GLM (Lv et al., 2014a; Lv et al., 

2014b). 

 

Fig. 2. Identified task-evoked networks and ICNs in sparse representation of emotion tfMRI data. (a) 

Spatial and temporal patterns of the three identified task-evoked networks based on sparse representation 

compared with traditional GLM-derived activation maps and task contrast paradigm curves in one example 

subject. (b) Group-averaged spatial and temporal patterns of the three identified task-evoked networks 

compared with group GLM-derived activation maps and task contrast paradigm curves across all subjects. 
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(c) Spatial patterns of nine identified ICNs in sparse representation compared with ICN templates in the 

example subject. (d) Group-averaged spatial patterns of the nine identified ICNs compared with ICN 

templates across all subjects. 

 

Moreover, we identify the intrinsic connectivity networks (ICNs) (Seeley et al., 2007; Raichle 

2010; Smith et al., 2009; Lv et al., 2014a; Lv et al., 2014b) from the dictionary components for 

each subject in each task data as follows. We measure the spatial similarity defined in Eq. (4) 

between dictionary components and previously identified ICN templates (Fig. 2c) to determine 

the correspondence (Lv et al., 2014b). Specifically, ten previously well-defined ICNs (Smith et 

al., 2009) are adopted as ICN templates in this study. We select the top ten candidate dictionary 

components which have high spatial similarity with each ICN template, respectively. Each 

component is further examined by a group of seven experts separately to determine the final 

component with the best match of spatial pattern and ICN template based on the agreement 

reached by a voting procedure of all experts. Moreover, we examine the group consistency of 

each identified ICN across all subjects and all task data by comparing the spatial pattern between 

group-averaged identified ICN and corresponding ICN template (Fig. 2d), and only those 

consistent dictionary components across subjects and across task data are retained as identified 

ICNs. More details are in (Lv et al., 2014a; Lv et al., 2014b). Our rationale is that each identified 

ICN in sparse representation should have high spatial similarity (overlap rate) with the 

corresponding previously identified ICN template across different subjects. 

 

 

It should be noted that since there is no quantitative or effective interpretation of the 

comprehensive collection of all dictionary components identified by sparse representation of 

tfMRI signals, we adopt the independent traditional GLM-derived contrast maps and ICN 

templates as the references to identify those similar meaningful functional networks from the 

dictionary components (Lv et al., 2014a; Lv et al., 2014b), as well as to confirm that those 
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meaningful functional networks indeed „exist‟ in human brain no matter what methods are 

adopted based on current brain science knowledge. It should also be noted that in the future, all of 

those hundreds of dictionary components (task-evoked or intrinsic connectivity networks, or even 

noise and artifacts) should be identified with future understanding of human brain function and 

development of other effective methodology. 

 

Identification of THFRs and Assessment of Spatial Patterns on Gyri/Sulci 

After performing sparse representation of tfMRI signals and characterizing the meaningful 

functional networks, we identify task-based heterogeneous functional regions (THFRs) and assess 

their spatial patterns on cortical gyri/sulci for each subject in each task data in this section. 

Specifically, since the dictionary components can be viewed as functional networks and the i-th 

column iα  (i=1,...n) of α represents the functional network composition of grayordinate ig  

(i=1,...n), we assess the number of involved functional networks (dictionary components) of ig  

by counting the number of non-zero elements in iα   ( 0iα ). THFR is then defined as: 

0
. .i iTHFR g s t q  α  (5) 

In brief, THFR is composed of a collection of grayordinate ig  (i=1,...n) of which the number of 

non-zero elements (i.e., the number of involved functional networks) in iα  is larger than a 

threshold q. Note that since we define q as the value of 
0iα  at the top p% across all 

grayordinates, the value of q is determined once value of p% is decided. The rationale of 

choosing value of p% is that p% should be small enough to identify the THFRs from all 

grayordinates, while p% should also not be too small to identify merely isolated brain 

grayordinates instead of continues THFR regions. We test different p% to examine the spatial 

pattern consistency of identified THFRs which will be detailed in „Spatial Patterns of THFRs on 

Cortical Gyri and Sulci‟ section. Note that we adopt a uniform p% for all tfMRI data and subjects 
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since the values of 
0iα  across all voxels/grayordinates are typically normally distributed with 

similar mean and standard deviation across all subjects as illustrated in (Lv et al., 2014b) and 

Supplemental Fig. 1. It should also be noted that it is likely that the identified THFRs contain 

specific artifact or noise components which cannot be well quantitatively characterized or 

modeled under current brain science knowledge. However, the results in „Results‟ section will 

show that the identified THFRs are indeed meaningful and contain multiple identified functional 

networks. 

 

After obtaining the spatial distribution of THFRs on grayordinate cortical surfaces, the further 

spatial pattern assessment of THFRs on gyri/sulci is straightforward. As each grayordinate 

already has the gyri/sulci information in each subject (Glasser et al., 2013), we could count the 

number of involved grayordinates in THFRs on gyral and sulcal regions respectively, then assess 

the ratio between the percentage of involved grayordinates in THFRs on gyri vs the percentage on 

sulci. 

 

Results 

Identification of Meaningful Functional Networks in Sparse Representation 

We adopted the temporal/spatial similarity measurement in Section „Identification of Functional 

Networks in Sparse Representation‟ to identify meaningful task-evoked networks and ICNs from 

tfMRI data of each subject. In total, we identified 3, 2, 2, 5, 2, 3, and 6 task-evoked networks 

from the datasets of emotion, gambling, language, motor, relational, social, and working memory 

task, respectively. The detailed description of the task-evoked networks is in Supplemental 

materials. Figs. 2a-2b show an example consisting of the three identified task-evoked networks in 

emotion tfMRI data, while the results from the other six tasks could be found in Supplemental Fig. 

2. Specifically, Fig. 2a shows the three task-evoked networks in emotion tfMRI data of one 
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example subject. We can see that all three networks have similar spatial patterns compared with 

corresponding GLM-derived activation maps as well as similar temporal patterns compared with 

the corresponding task contrast paradigm curve. Quantitatively, the spatial overlap rate R is 0.30, 

0.33, and 0.29, and the temporal similarity is 0.38, 0.30, and 0.37 for the three networks in the 

example subject, respectively. Fig. 2b shows the group-averaged spatial maps and temporal 

curves of identified task-evoked networks across all subjects in emotion task. Table 1 provides 

the spatial overlap rates and temporal similarity values of all group-averaged task-evoked 

networks in seven tasks. Supplemental Tables 2 and 3 provide the spatial overlap rate and 

temporal similarity value of all identified task-evoked networks in seven tasks across all 

individual subjects. It is evident that all identified task-evoked networks are consistent and have 

relatively high spatial overlap rate and temporal similarity across subjects. 

 

Table 1. Spatial overlap rate (S) and temporal similarity (T) of all identified group-averaged task-evoked 

networks (N) comparing with group GLM-derived activation maps. 

 Emotion Gambling Language Motor Relational Social WM 

 
 S T S T S T S T S T S T S T 

N#1 0.84 0.63 0.97 0.42 0.95 0.46 0.95 0.62 0.90 0.44 0.97 0.54 0.94 0.51 

N#2 0.92 0.55 0.95 0.23 0.86 0.55 0.95 0.58 0.92 0.43 0.94 0.62 0.89 0.47 

N#3 0.79 0.68   0.94 0.56  0.94 0.69 0.98 0.59 

N#4    0.83 0.62   0.94 0.46 

N#5    0.94 0.57   0.90 0.47 

N#6       0.92 0.61 

 

Moreover, we identified nine ICNs in all subjects and in all seven tasks. The detailed description 

of the nine ICNs is in Supplemental materials. Fig. 2c shows the spatial maps of the nine 

identified ICNs compared with ICN templates (Smith et al., 2009) in the emotion task of the 

example subject, while the results from the other six tasks are shown in Supplemental Fig. 2. 
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Quantitatively, the spatial overlap rate is 0.34, 0.51, 0.37, 0.28, 0.27, 0.27, 0.23, 0.33, and 0.29 

for the nine ICNs, respectively. Fig. 2d shows the group-averaged spatial maps of identified ICNs 

in emotion data across all subjects. Table 2 provides the spatial overlap rate of all group-averaged 

ICNs. Supplemental Table 4 provides the spatial overlap rate of all nine identified ICNs in seven 

tasks across all subjects. We can see that all identified ICNs are consistent and have relatively 

high spatial overlap rate across tasks and subjects. 

 

Table 2. Spatial overlap rates of all identified group-averaged ICNs. 

 
Emotion Gambling Language Motor Relational Social WM 

ICN#1 0.70 0.88 0.99 0.98 0.84 0.97 0.90 

ICN#2 0.96 0.94 0.98 0.97 0.97 0.97 0.96 

ICN#3 0.79 0.91 0.97 0.94 0.84 0.95 0.87 

ICN#4 0.69 0.79 0.86 0.85 0.75 0.84 0.71 

ICN#5 0.52 0.86 0.91 0.93 0.81 0.92 0.75 

ICN#6 0.44 0.85 0.92 0.93 0.81 0.92 0.72 

ICN#7 0.45 0.67 0.79 0.74 0.62 0.76 0.62 

ICN#8 0.69 0.90 0.97 0.92 0.84 0.91 0.81 

ICN#9 0.64 0.89 0.95 0.93 0.84 0.92 0.82 

 

In summary, the identified task-evoked networks have similar spatial patterns compared with the 

traditional GLM-derived activation maps as well as similar temporal patterns compared with the 

task contrast paradigm curve, and the identified ICNs have similar spatial patterns with ICNs 

templates across all subjects and tasks based on HCP grayordinate tfMRI data, indicating that 

HCP grayordinate tfMRI data is sufficient to represent the whole-brain tfMRI data (e.g., in 

volumetric space), to reflect whole-brain functional activities, and to identify meaningful whole-

brain functional networks (Barch et al., 2013; Smith et al., 2013), which is also the premise to 

explore functional architecture of cortical gyri and sulci based on HCP grayordinate data in this 

paper. 
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Identification of THFRs in Single Task and Multiple Tasks 

We identified task-based heterogeneous functional regions (THFRs) in each single task. Fig.3 

shows the distribution density map of identified THFRs across subjects in each single task. In 

brief, since the grayordinates have correspondence across all subjects, for each task, we combine 

the distribution map of identified THFRs of all subjects together by counting the number of each 

grayordinate in the THFRs of all subjects, and calculating the mean number of each grayordinate 

in the THFRs to obtain the distribution density map of identified THFRs across subjects. We see 

that THFRs have higher distribution density at the bilateral parietal lobe, frontal lobe, and visual 

association cortices within each single task. Moreover, such high distribution density pattern is 

relatively consistent across seven tasks (as highlighted by the red arrows in Fig. 3). These 

findings are also consistent across all individual subjects. More individual examples are shown in 

Supplemental Figs. 3 and 4. 
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Fig. 3. Distribution density map of identified THFRs across all subjects in each of the seven tfMRI data. 

Those THFRs with higher distribution density and relatively consistent across seven tasks are highlighted 

by red arrows. 
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Moreover, we identified THFRs across multiple tasks for each subject. Fig. 4 shows the 

distribution density map of identified THFRs of all subjects across multiple tasks (at least 3-7 

tasks), respectively. In brief, since the grayordinates have correspondence across all subjects, for 

each situation (across 3 to 7 tasks), we combine the distribution map of identified THFRs of all 

subjects together by counting the number of each grayordinate in the THFRs of all subjects, and 

calculating the mean number of each grayordinate in the THFRs to obtain the distribution density 

map of identified THFRs across all subjects. Interestingly, the THFRs also have higher 

distribution density at the bilateral parietal lobe, frontal lobe, and visual association cortices. 

Moreover, the higher distribution density pattern is relatively consistent across from at least three 

tasks to at least seven tasks (as highlighted by red arrows in Fig. 4) as those in single task (Fig. 3). 

These findings are also consistent across all subjects. More individual examples are shown in 

Supplemental Figs. 5 and 6. 
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Fig. 4. Distribution density map of identified THFRs of all subjects across multiple tasks (at least 3 of 7 

tasks in HCP data (emotion, gambling, language, motor, relational, social, and working memory)). Those 

THFRs with higher distribution density and relatively consistent across multiple tasks are highlighted by 

red arrows. 

 

We quantitatively characterized the identified THFRs via two measurements. First, Figs. 5a and 

5c show the network histograms (by counting the number of involved dictionary components 
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(functional networks)) after normalization to the sum of 1 in THFRs and task-evoked networks of 

the example subject in emotion data, respectively. We can see that the histogram of THFRs (Fig. 

5a) is complex and distributed across all components, while the histogram of task-evoked 

networks highly concentrates on the specific components (highlighted by black in Fig. 5c), as 

expected. More results are in Supplemental Fig. 7. Quantitatively, the network histogram 

concentration (defined as summing the percentage of top three components in the histogram) is 

1.22% and 8.11% for THFRs and task-evoked networks in the example subject in emotion data, 

respectively. Table 3 provides the histogram concentration of THFRs and task-evoked networks 

in all seven tasks across all subjects. We can see that the histogram concentration value of THFRs 

is statistically significantly smaller than that of task-evoked networks (p < 0.05) across all seven 

tasks and subjects by using paired t-test. Moreover, the network histogram entropy (defined as the 

entropy of all histogram elements (Lv et al., 2014b)) is 8.62 and 8.34 for THFRs and task-evoked 

networks in the example subject in emotion data, respectively. Table 4 shows the histogram 

entropy of THFRs and task-evoked networks in all seven tasks across all subjects. We can see 

that the histogram entropy of THFRs is statistically significantly larger than that of task-evoked 

networks (p < 0.05) across all seven tasks and subjects by using paired t-test. Second, we 

examined the temporal patterns of THFRs and compared with those of task-evoked networks 

within the same subject. As shown in Fig. 5b, the temporal patterns of all THFRs as well as two 

example components (R4 and R5) in THFRs of the example subject in emotion data are complex 

and have much less similarity with the task contrast paradigm curves, while the temporal patterns 

of the top three components in the histogram of task-evoked networks have high similarity with 

the task contrast paradigm curves (Fig. 5d). Quantitatively, the mean temporal similarity for the 

temporal pattern of all THFRs and two example components (R4 and R5) is only 0.01, -0.06, and 

0.01 compared with the three task contrast paradigm curves, respectively, while 0.38, 0.30, and 

0.37 for the top three components in the histogram of task-evoked networks in the same subject, 

respectively. 
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Fig. 5. Network histogram and temporal pattern comparisons between THFRs and task-evoked networks. 

(a) Network histogram (red) after normalization to the sum of 1 in THFRs of an example subject in 

emotion data. (b) Mean temporal pattern of identified THFRs (red) and temporal patterns of two example 

components identified as ICN #4 and ICN #5 in Fig. 2 (R4 and R5). The task contrast paradigm curve is 

shown in black. (c) Network histogram (blue) after normalization to the sum of 1 in task-evoked networks 

of an example subject in emotion data. Here the task-evoked networks are the union of three identified 

task-evoked networks. (d) Temporal patterns of three components identified as task-evoked networks in Fig. 

2 (N1, N2, and N3). The task contrast paradigm curve is shown in black. 

 

Table 3. Network histogram concentration of THFRs and task-evoked networks (%) in seven tasks across 

all subjects. The value is represented as mean±standard deviation. Bold values indicate p-values smaller 

than 0.05. 

 Emotion Gambling Language Motor Relational Social WM 

THFRs 1.44±0.17 1.35±0.16 1.26±0.11 1.31±0.15 1.42±0.20 1.38±0.16 1.19±0.09 
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Task-evoked 7.20±1.38 4.16±0.55 3.06±0.14 4.77±0.89 4.75±0.75 4.27±0.53 3.50±0.44 

p-value 3.53E-42 9.04E-46 1.45E-64 1.15E-39 1.17E-43 2.19E-47 2.94E-48 

 

Table 4. Network histogram entropy of THFRs and task-evoked networks in seven tasks across all subjects. 

The value is represented as mean±standard deviation. Bold values indicate p-values smaller than 0.05. 

 Emotion Gambling Language Motor Relational Social WM 

THFRs 8.61±0.01 8.62±0.01 8.62±0.00 8.62±0.01 8.61±0.01 8.62±0.01 8.63±0.00 

Task-

evoked 

8.41±0.07 8.56±0.02 8.60±0.01 8.52±0.05 8.52±0.03 8.56±0.02 8.56±0.03 

p-value 6.28E-32 1.89E-31 6.74E-35 8.68E-24 5.86E-29 3.87E-32 3.18E-28 

 

We further justified the identified THFRs from two perspectives. First, Figs. 3-4 and 

Supplemental Figs. 3-6 have illustrated that the spatial distributions of identified THFRs are 

reasonably consistent (bilateral parietal lobe, frontal lobe, and visual association cortices) across 

all subjects and tasks, and in agreement with current neuroscience knowledge (Duncan 2010; 

Fedorenko et al., 2013; Anzai et al., 2007), where it has been reported that the frontal and parietal 

lobes have multiple-demand patterns associated with diverse cognitive demands (Duncan 2010; 

Fedorenko et al., 2013), and that visual association cortices is a heterogeneous collection of visual 

areas and is involved in higher level of processing, e.g., responding to visual stimuli which have 

complex pattern or structure (Anzai et al., 2007). This group-wise consistency and coincidence 

with current neuroscience knowledge is a reasonable verification of identified THFRs as reliable 

patterns which can be adopted for further investigation such as network dynamics, given the lack 

of ground-truth in brain mapping. 

 

Second, as shown in Fig. 5a, the components that are identified as task-evoked networks (N1, N2 

and N3) and ICNs (R1 to R9) all have relative high percentage in the histogram of THFRs 
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(highlighted by black in Fig. 5a) in the example subject, indicating that THFRs not only indeed 

involve functional networks (both task-evoked networks and ICNs), but also involve specific 

regions that are participated in the task contrast paradigm (N1, N2, and N3). However, those 

regions with complex temporal pattern due to the complex network composition (Fig. 5a) of 

THFRs may have been underestimated by traditional approaches which merely consider 

individual tfMRI signals based on model-driven subtraction procedures (Lv et al., 2014a; Lv et 

al., 2014b). Those regions that were identified by our approach but were not by traditional 

approaches can be further investigated in the future, which is another research topic besides this 

paper. 

 

Spatial Patterns of THFRs on Cortical Gyri and Sulci 

We have shown the spatial distribution of THFRs on the cortical surface in each single task (Fig. 

3) and across multiple tasks (Fig. 4). In this section, we further investigate how the THFRs are 

distributed over gyri/sulci. First, we assessed the spatial patterns of identified THFRs in each 

single task as illustrated in Fig. 3 on cortical gyri and sulci. Fig. 6a shows the segmented gyri and 

sulci of one example subject which is provided in HCP grayordinate data (Glasser et al., 2013). 

Figs. 6b-6c show the spatial distributions of THFRs on gyri and sulci of the example subject in 

emotion task data, respectively. More examples are shown in Supplemental Fig. 8. Fig. 6d shows 

the percentage of involved grayordinates in THFRs on gyri and sulci across all seven tasks in the 

example subject. More subjects are shown in Fig. 7. Fig. 6e shows the mean percentage of 

involved grayordinates in THFRs on gyri and sulci in all seven tasks. We can see that the mean 

percentage of involved grayordinates in THFRs on gyri is consistently larger than that on sulci in 

all seven tasks and all subjects. Moreover, we calculated the ratio of percentage of involved 

grayordinates in THFRs on gyri vs that on sulci across all subjects and tasks. Table 5 provides the 

mean ratio of percentage of involved grayordinates in THFRs on gyri vs that on sulci in seven 

tasks. We can see that the percentage of involved grayordinates in THFRs on gyri is statistically 
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significantly larger than that on sulci (p < 0.05) across all subjects in all seven tasks by using 

paired t-test. The mean ratio of percentage of involved grayordinates in THFRs on gyri vs that on 

sulci is 2.22, 3.14, 2.63, 2.95, 3.38, 2.50, and 2.76 in seven tasks, respectively. Supplemental 

Table 5 provides the ratio of percentage of involved grayordinates in THFRs on gyri vs that on 

sulci in individual subjects. Supplemental Tables 6 and 7 provide mean ratio and statistical 

significance of percentage of involved grayordinates in THFRs on gyri vs that on sulci across all 

subjects in seven tasks using different threshold p% when identifying THFRs (Eq. (5)). We can 

see that the percentage of involved grayordinates in THFRs on gyri is consistently significantly 

larger than that on sulci under different threshold p%, indicating the stability of our findings when 

choosing p% in a reasonable range. 
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Fig. 6. Spatial patterns of THFRs in single task on gyri/sulci and the percentages of involved grayordinates 

in THFRs in single task on gyri/sulci. (a): Segmented gyri and sulci of one example subject. (b)-(c): Spatial 

patterns of THFRs (red) on gyri (b) and sulci (c) in emotion task data of the example subject, respectively. 

(d) Percentages of involved grayordinates in THFRs on gyri/sulci in the example subject in all seven tasks. 

(e) Mean percentages of involved grayordinates in THFRs on gyri/sulci across all subjects in all seven tasks 

(E: emotion; G: gambling; L: language; M: motor; R: relational; S: social; W: working memory). 
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Fig. 7. Percentages of involved grayordinates in THFRs in single task on gyri/sulci of another six subjects 

indexed by (a)-(f), respectively. (E: emotion; G: gambling; L: language; M: motor; R: relational; S: social; 

W: working memory) 

 

Table 5. Mean ratio of percentage of involved grayordinates in THFRs on gyri vs that on sulci across all 

subjects in seven tasks. The ratio is represented as mean±standard deviation. Bold values indicate p-values 

smaller than 0.05. 

 Emotion Gambling Language Motor Rational Social WM 

Ratio 2.22±1.09 3.14±3.87 2.63±2.07 2.95±2.47 3.38±4.29 2.50±1.32 2.76±1.59 
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p-value 9.48E-22 9.60E-19 2.98E-20 1.56E-19 1.49E-17 8.25E-22 8.29E-22 

 

Moreover, we assessed the spatial patterns of identified THFRs across multiple tasks (Fig. 4) on 

cortical gyri and sulci. Fig. 8a shows the segmented gyri and sulci of the example subject which 

is provided in HCP grayordinate data (Glasser et al., 2013). Figs. 8b-8c show the spatial patterns 

of THFRs on gyri/sulci of one example subject across at least four tasks. More examples are 

shown in Supplemental Fig. 9. Fig. 8d shows the percentage of involved grayordinates in THFRs 

on gyri and sulci across at least three to seven tasks in the example subject. More examples are 

shown in Fig. 9. Fig. 8e shows the mean percentage of involved grayordinates in THFRs across 

multiple tasks on gyri and sulci across all subjects. It can be seen that the percentage of involved 

grayordinates in THFRs across multiple tasks on gyri is consistently larger than that on sulci. We 

further calculated the ratio of percentage of involved grayordinates in THFRs on gyri vs that on 

sulci for all subjects. Table 6 provides the mean ratio of percentage of involved grayordinates in 

THFRs on gyri vs that on sulci across all subjects. We can see that the percentage of involved 

grayordinates in THFRs across multiple tasks on gyri is statistically significantly larger than that 

on sulci (p < 0.05) across all subjects by using paired t-test. Moreover, the more tasks are 

involved, the larger the mean ratio of percentage of involved grayordinates in THFRs on gyri vs 

that on sulci is (except for 6 tasks and 7 tasks). Supplemental Table 8 shows the ratio of 

percentage of involved grayordinates in THFRs across multiple tasks on gyri vs that on sulci in 

individual subjects. 
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Fig. 8. Spatial patterns of THFRs on gyri/sulci in multiple tasks and the percentages of involved 

grayordinates in THFRs in multiple tasks on gyri/sulci. (a): Segmented gyri and sulci of one example 

subject. (b)-(c): Spatial patterns of THFRs (red) on gyri (b) and sulci (c) across at least four tasks of the 

example subject, respectively. (d) Percentages of involved grayordinates in THFRs on gyri/sulci in the 

example subject across at least three tasks. (e) Mean percentages of involved grayordinates in THFRs on 

gyri/sulci across at least three tasks across all subjects. 
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Fig. 9. Percentages of involved grayordinates in THFRs across multiple tasks on gyri/sulci of another six 

subjects indexed by (a)-(f), respectively. 

 

Table 6. Mean ratio of percentage of involved grayordinates in THFRs across multiple tasks on gyri vs that 

on sulci across all subjects. The ratio is represented as mean±standard deviation. Bold values indicate p-

values smaller than 0.05. 

 3 tasks 4 tasks 5 tasks 6 tasks 7 tasks 

Ratio 1.31±0.16 1.66±0.29 2.22±0.64 3.33±1.67 2.53±1.05 

p-value 2.68E-26 2.93E-34 3.30E-35 2.00E-35 2.04E-27 
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THFRs Distribution Difference between Cortical Gyri and Sulci is Not Due to 

Signal-to-noise Difference in High-resolution FMRI 

When acquiring fMRI data at high resolution (2mm isotropic voxels in this paper or below), there 

can be a time series signal to noise ratio (tSNR) difference between different portions of cortex 

(Kruger and Glover, 2001; Weiner and Grill-Spector, 2010). To examine whether the identified 

THFRs distribution difference between cortical gyri and sulci is merely due to the possible tSNR 

difference between cortical gyral and sulcal regions in high-resolution fMRI data, we measured 

the tSNR of each involved grayordinate in the identified THFRs. Specifically, for each 

grayordinate involved in the THFRs as the center, we obtained its 3-ring (about 5 mm radius, 

Weiner and Grill-Spector, 2010) neighborhood grayordinates on the cortical mesh surface. We 

then extracted the fMRI time series of all grayordinates within the 3-ring and calculated the tSNR 

of the centered grayordinate as follows (Weiner and Grill-Spector, 2010): 

( )

( )

mean timeseries
tSNR

std timeseries
  (6) 

Fig. 10b shows the tSNR map of the THFRs on gyri and sulci in emotion task data of the same 

example subject in Figs. 6b-6c, respectively. We further calculated the mean tSNR of involved 

grayordinates in THFRs on gyri/sulci across all subjects in all seven tasks. As shown in Fig. 10c, 

we see that the tSNR of THFRs on sulci has larger mean value while also larger standard 

deviation compared with that on gyri. We further examined if there is statistical tSNR difference 

of THFRs between gyri and sulci via unpaired two-sample t-test (p<0.01).  The results showed 

that the mean values of tSNR of gyri and sulci are statistically equal across all subjects in all 

seven tasks. In conclusion, the identified THFRs distribution difference between cortical gyri and 

sulci is not a result of the possible tSNR difference in high-resolution fMRI data, and might truly 

reveal novel functional architecture of cortical gyri and sulci. 
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Fig. 10. tSNR measurement: THFRs distribution difference between gyri and sulci is not due to SNR 

difference. (a): Segmented gyri and sulci of the same example subject in Fig. 6a. (b): tSNR map of the 

THFRs on gyri and sulci in emotion task data of the same example subject in Figs. 6b-6c, respectively. (c) 

Mean tSNR of involved grayordinates in THFRs on gyri/sulci across all subjects in all seven tasks (E: 

emotion; G: gambling; L: language; M: motor; R: relational; S: social; W: working memory). 

 

Discussion and Conclusion 

We proposed a data-driven sparse representation framework on HCP grayordinate-based whole-

brain tfMRI signals to systematically identify and characterize the task-based heterogeneous 

functional regions in specific task performances and to assess their spatial pattern distribution 

difference on cortical gyri and sulci. Our results have shown that both consistent meaningful task-

evoked networks and ICNs were effectively and robustly reconstructed simultaneously across all 

subjects and seven tasks in HCP grayordinate tfMRI datasets via our proposed computational 

framework. Our results have also shown that the identified THFRs (involving the identified task-

evoked networks and ICNs) relatively consistently locate at the bilateral parietal lobe, frontal lobe, 

and visual association cortices across all subjects in both single task and across multiple tasks. 
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Our results finally have shown that the identified THFRs locate statistically significantly more on 

cortical gyral regions than on cortical sulcal regions across all subjects and tasks. Particularly, this 

THFRs distribution difference between gyri and sulci is not due to signal-to-noise difference in 

HCP high-resolution fMRI. This finding suggests that cortical gyri might participate more in 

multiple and heterogeneous functional processes than sulci in specific task performances, and 

might be consistent with our previous study based on resting state fMRI data demonstrating that 

gyri are global functional connection centers and sulci are local functional units (Deng et al., 

2014). As demonstrated in Introduction, there have been several findings reporting the 

structural/functional differences between gyri and sulci (Nie et al., 2012; Takahashi et al., 2012; 

Chen et al., 2013; Zhang et al., 2014; Zeng et al., 2014; Deng et al., 2014). For the first time (as 

far as we know), we demonstrated the functional difference during a specific task performance 

(i.e., THFRs distribution difference) between gyri and sulci in this paper. These results revealed 

novel functional architecture of cortical gyri and sulci, and might help better understand 

functional mechanisms of the human cerebral cortex in the future. 

 

It has been demonstrated that ICA for brain fMRI does truly recover maximal independence 

components, while practically it also possibly recovers overlapped components for brain fMRI 

like sparse representation method (Daubechies et al., 2009). It has been demonstrated that sparse 

representation of whole brain fMRI signals is superior to ICA or GLM methods in reconstructing 

concurrent brain networks (Lv et al., 2014a; Lv et al., 2014b). Though sparse representation of 

fMRI signals has been relatively less studied in the field, it is worthwhile in this work to employ 

sparse representation of whole-brain grayordinate-based fMRI signals to systematically examine 

and characterize task-based heterogeneous functional regions (THFRs) on cortical surface. Our 

experimental results have demonstrated meaningful results and several advantages, suggesting the 

value of this work. 
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More specifically, in this paper, we adopt independent traditional GLM-derived contrast maps 

and ICN templates as the references to identify and characterize similar task-evoked and ICN 

networks in sparse representation. Similar ideas have also been used in ICA literature. It is 

helpful at current stage since these GLM-derived maps and ICN templates reflect our current 

neuroscience knowledge and common practice. The identified meaningful functional networks in 

sparse representation similar as GLM-derived contrast maps and ICN templates confirm that 

those meaningful functional networks indeed „exist‟ in the human brain no matter what different 

methods are adopted based on current brain science knowledge. For the identified THFRs shown 

in Figures 6 and 8 (b) and (c), we have verified that these THFRs are reasonably consistent across 

all subjects and tasks, and in agreement with current neuroscience knowledge (see details in 

Section „Identification of THFRs in Single Task and Multiple Tasks‟). This group-wise 

consistency and coincidence with current neuroscience knowledge is a reasonable verification of 

the identified THFRs in Figures 6 and 8 (b) and (c) as reliable and meaningful sparse patterns. 

 

Moreover, our recent work (Lv et al., 2014b) has successfully identified 32 group-wise consistent 

functional network components across individual subjects in sparse representation. They are 

independent of any other methods such as GLM and ICN templates. These group-wise consistent 

network components can be adopted as functional network templates to define existing functional 

networks. These results indicate that sparse representation is not only a good method for 

characterizing the low-dimensional structure of tfMRI data, but also a good method for 

identifying the network structure of tfMRI data. Our ongoing effort is to learn more functional 

networks templates in sparse representation from large populations using big-data approaches to 

define a large space of existing functional networks in the future. 

 

In general, this study can be enhanced in the future in following aspects. First, all of those 

dictionary components derived from sparse representation should be quantitatively characterized 
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and modeled with future understanding of human brain function and development of other 

effective methodology to warrant assessment of the functional network distribution and/or 

removal of artifacts/noise in THFRs. Second, we can extend the THFRs spatial pattern 

assessment on cortical gyri/sulci to subcortical gyral/sulcal regions if effective methods are 

developed to perform cerebellum segmentation and cerebellar surface reconstruction with the 

high-resolution HCP datasets in the future (Glasser et al., 2013). Third, in this paper, we 

identified and reported the spatial distributions of those relatively consistent THFRs across 

subjects and tasks in coarse-scale, i.e., roughly locate on bilateral parietal lobe, frontal lobe, and 

visual association cortices. In the future, we can perform a finer scale assessment of THFRs 

spatial distributions and patterns on gyri/sulci by adopting our recently developed Anatomy-

guided Dense Individualized and Common Connectivity-based Cortical Landmark (A-

DICCCOL) system (Jiang et al., 2014) which discovered 555 consistent cortical landmarks which 

have gyral/sulcal and structural (fiber connection pattern) correspondences across different 

subjects. In this way, the spatial distributions of the relatively consistent THFRs across subjects 

and tasks can be identified and reported at the cortical gyral/sulcal landmark scale. We can also 

correlate the spatial distribution of identified THFRs with other attributes (e.g., fiber density, 

cortical thickness, etc.) to explore the regularity and variability between the human brain structure 

and function. 
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