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Abstract

Taskbased fMRI activation mapping has been widely used in clinical neurosdiercderto assess
different functional activity patterns in conditions such as prenatal alcohol exposure (PAE) affected brains
and healthy controls. In this paper, we propase@ove] alternativeapproach of grouwise sparse
representation of the fMRI data of multiple groups of subjects (healthy control, exposdgsnuorphic

PAE and exposed dysmorphic PAE) and assess the systematic functional activity differences among thes
three populations. Specifically, a common time series signal dictionary is learned from the aggregated
fMRI signals of all three groups of subjects, and then the weight coefficient mgtraoeed statistical
coefficient map (SCM)associated with eachommon dictionary were statistically assessed for each
group separately. Through irdgroup comparisons based on the correspondence established by the
common dictionary, our experimental results have demonstrated that thewgseugparse coding
strategyand the SCMcan effectively reveal a collection of brain networks/regions that were affected by

different levels of severity of PAE.
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1. INTRODUCTION

Taskbased fMRI has been widely used to identify brain regions that are functionally involved in specific
task performance, and has significantly advanced our understanding of functional localizations within the
brain (Friston et al., 1994HeegerandRess 2002;MatthewsandJezzarg 2004;Logothetiset al.,20089.

In the functional neuroimaging community, there have been a variety of 1nasied or datdriven
approaches for fMRI time series analysis /an@ctivation detection, for instances, correlation analysis
(Bandettiniet al., 1993), general linear model (GLMBriston et al., 1994;Worsley, 1997, statistic

testing Ardekaniet al., 1998), principal component analysis (PCAhdersenet al., 1999) Markov
random field (MRF) model§Descombeset al., 1998) mixture models(Hartvig and Jensen 2000)
independent component analysis (ICA)JcKeown et al., 1998), clustering analysiBgumgartneet al.,

1997), wavelet algorithmgBullmore et al., 2003;Shimizu et al., 2004) autoregressive spatial models
(Woalrich et al., 2004), Bayesian approachélduaienandPuthusserypady2007;Bowmanet al., 2008

and empirical mean curve decomposition (Deng et al., 2012). Among all of these methods, GLM is one of
the most widely used methodbriston et al., 1994;Worsley et al., 1997) due to its effectiveness,
simplicity and robustnestn particular, sveral popular fMRHata analysisoftware packages such as the

FSL FEAT (ttp://www.fmrib.ox.ac.uk/fsl/feats/inek.htm), SPM fttp://www.fil.ion.ucl.ac.uk/spm)/

and AFNI fttp://afni.nimh.nih.gov/afn)/have employed the GLM methoBr{stonet al., 1994Worsley

et al., 1997).

In addition to the abovementioned voxake methodsin order todeal with the emarkable individual

variability and different sources of noss@.g., Thirion et al., 2007Derrfuss and Mar, 200%.aird et al.,



2009; Hamilton, 2009; Costafreda, 200%ahmasehi2010Q, groupwise task fMRI activation detection
methodshavebeen develped, such as the twevel groupwise GLM method Beckmannet al., 2003),
Bayesian inferencéWoolrich et al., 200d), multi-level analysis Thirion et al., 200y, group ICA
analysis Calhounet al., 2009),FENICA (Schopf et al.,2011)group Markov RandomField (MRF)
methods g et al., 201Q)and our recently developed DICCC®hsed growmise activation detection

(Lv et al., 2014). For instance, the FSL FEAT/FLAME toolkits (Beckmann et al., 2@8ith et al.,

2009 incorporated a twéevel groupwise G_M analysis procedure that warps the individual activation
significance maps to the same template space via image registration methods (e.g., FSL FLIRT), and then
infers the groupwise significantly activated regions from the pooled activation maps. Ther ma
advantages of this twievel GLM method include the facilitation of valid group analyses and inference,
good flexibility and generality, and easy and meaningful interpretation of results (Beckmann et al., 2003;
Smith et al., 2004 In our recentlydeveloped DICCCOL(dense individual and common connectivity
based cortical landmarkbpsedgroupwise activation detection (Lv et al., 2@dthe firstlevel GLM
analysiswasfirst performed orthe fMRI signal ofeach correspondinglCCCOL landmark in imividual

br ai nods ,andvthen the@stintated effect sized the same landmark from a group of subjects are
statistically assessaslith the mixedeffect modelat the group levelFinally, the consistently activated
DICCCOL landmarks are determineddadeclaredn a groupwise fashiorin response to externblock-
basedstimuli. The advantage of this method is that these statistical inferences based on the intrinsically
established DICCCOL correspondences among a group of subjects can be morearaliablauist to the

variability in individualactivation magnitudeand the evoked brain networks.

Although theseabovementionethethoddeverage the statistical power from multiple brains in order to
gain the robustness to noises and the less satysio individual variability, challengestill exist First,
althoughthe statisticalactivation maps can be estimated gravipely in spite of the variability of
individual anatomy witimageregistration methodghe consistency and diversity of dynariemporal

response evoked by task performance cannot be systematically assessednigelyp Secondijt has



been difficult to model multiple concurrentbrain responses from differespatiallyoverlappingbrain
networks. Specifically, frona human newscience perspective, it has been widely reported and argued
that a variety of cortical regions and networks exhilbibrey functional diversity Puncan 2010;
Gazzaugia 2004; Pessoa, 2012)hat is, a cortical region could participate in multiple furraio
domains/processes and a functional network might recruit various hatemg neuroanatomic areas
(Gazzaugia 2004; Pessoa, 2012Yherefore, it ispossiblethat heterogeneous regions and diverse
activities participating in a task performarcmuld beoverlooked bybrain activity modeling method#s

a consequence, it ishallenging formodeldriven task fMRI data analysis methods to reconstruct

concurrent functional networks and assess systematic activity differences across populations.

In recognition of the above challengesesearchersncluding ourselveshave decomposed fMRI signals
into linear combinations of multiple components baseda@&driven sparse representatior whole-

brain fMRI signals (Lee et al., 2010y et al., 2013Lv et al., 2014b; Lv et al., 201¥aroquauxet al.,
2011). The basic idea of this computational methodology is to aggregate all of dozens (or hundreds) of
thousands of fMRI signals within the whole brain of one subject into a big data matrix, which is
subgquently factorized into an oveomplete dictionary basis matrix and a reference weight matrix via
dictionary learningand sparse coding algorithms (Mairal et al., 20T0kn, the time series of each over
complete basis dictionary represents the fundtiattivities of a brain network and its corresponding
reference weight vector stands for the spatiap of thisorain network (Lv et al., 2013; Lv et al., 2014b;

Lv et al., 201%. An important characteristic of this framework is that the decomposeemneteweight
matrix naturally reveals the spatial overlap/interaction patterns areongstructedbrain networks (Lv et

al., 2014h. Thus this novel datdriven strategy naturally accounts for that a brain region might be
involved in multiple fultional pocessesuncan 2010;Gazzaugia2004; Pessoa, 201andits fMRI

signal is compsed of various components @.et al., 2011; Lv et al., 2013; Lv et al., 2014v et al.,

2015;Varoquauxet al., 2011)



However, an unsolved problem in previous methaidsparse regsentation of fMRI signals (leeet al.,
2011; Lv et al., 2013; Lv et al., 201 Maroquauxet al., 2011)js how to establish the correspondence of
different dictionary components across individuals and populat®pescifically, works in (Lee et al.,
2011; Lv et al., 2014bLv et al., 201% performed dictionary learning and sparse coding on whole brain
fMRI signals and interesting functional networks of meaningful temporal and spatial paterrize
detected among all the learned componeBtg.it is difficult to perform intersubject comparison or
statistical analysisnainly because the dat#riven dictionary learning and sparse coding metapplied

on individualslearnedbrain networksy taking account of individual specificity adaptivellyee et al.,
2011; Lv et al., 2014b and correspondence et be established across subjegtscommon dictionary

is learned from the task fMRI signals of a group of subjects in Lv et al., 801Bat groupvise analysis
could be established based on the correspondence of the common dictionaiydvesi®r,inter-group
comparison is usuallgequiredfor clinical research such assedsg the differences of functional brain
activities betweenbrain conditions such as prenatacohol exposure (PAE) (Coles et al.,, 1991;
Santhananet al. 2009)and healthy controlsSofar, establishing correspondence across gragsell as
acrosssubjects is an important problem that has not badficiently investigated beforeAnother
importantissue isthe variability in fMRI analysis and groupiise method. In other words there is
remarkable variability ofactivation magnitudefor the corresponding brain regiomasrossindividual
subjects and imagingessiongSmith et al., 2005Thirion et al., 200}, due tophysiological noises
head/bodymotion, restingstate activityand other factors. This variability imposes additional challenges

to the robust and reliable inference of grevipe consistent funicinal networks.

In responses to the above challengasthis paper, we propose a novel computational framework of
groupwise sparse representation of the fMRI datasets of multiple groups of subjects (healthy control,
exposed nomysmorphic PAE and exposg dysmorphic PAE fanthanamet al, 2009) and
comprehensively assess the systematic functional activity differences among these three populations.

Specifically, fMRI signals from albf the three groups of subjects aggregateds training sample®



learn a common time series signal dictionampich would establish component correspondence across
subjects and groupBefore the extraction of fMRI signals, each subject has been registered into the MNI
atlasspacein which thevoxel correspondence lisughly established across all subjects and grdgsed

on aunified brain mask which covers common region of all brakfter sparse coding using the online
dictionary method (Mairal et al., 201(3tatisticalassessment performedon the weight coeftient
matrices named statistical coefficient map (SCM) hexssociated with each common dictionary for each
group separately. By comparing the irgeoup differences based on the correspondence established by
the common dictionary, our experimentalulés demonstrated that the grewse sparse coding strategy

can effectively elucidate different levels of effect of PAE in a collection of brain networks/regions.

2. MATERIALS AND METHODS

2.1. Overview
Our computational pipeline is summarized in Fidritst, subjects from 3 groups (GC: Healthy control,
GN: Nondysmoric PAE, GD: Dysmorphic PAES@nthananet al, 2009 arespatiallynormalized into
the standard MNI space viilmearimageregistration metho#SL FLIRT (Jenkinsoret al, 2001) Then
by wsing a standardized group common brain mask, whi@a fMRI signals of each subject are
extracted anadggregatednto a 2D signal matriXYys has shown in Fig.1a. Then all extracted signal
matrices from 3 groups are pooled and arranged into mdigx s as shown in Fig.1b. Note that S
is composed of three groups of subjects here:
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Our computational framework then employs the online dictionary iegrand sparse coding method
(Mairal et al, 2010) which factorizes the signal mati®into a time series signal dictionary matixand
the coefficient matridXA (Fig.1c). Note thaD is leaned to be commonly sharedrossthree groups by

assuming that the same task would stimulate similar or comparable functional responses in these



individual brains, and thA matrix preserves the spatial voxel organization and group correspondence of
S (Fig.1c), ie,6 ©6 B B ¥xa . Through temporal or frequencgnalysisof matrix D,

meaningful taskevoked responses can be interpretdd particular, based on the component
correspondence established by the combamd voxel correspondea built up by the standard common
mask, statistical groupise consistent coefficient mapping can be performed for each group separately.
Notably, he crosggroup correspondence established by the coninalsoprovides us a foundation for

laterinter-group comparison

2.2 Data Acquisition and Pre-processing

In an arithmetic tasbased fMRI egeriment under IRB approvadld participantsvere scannedn 3T
Siemens Trio scanneBénthananet al. 2009)at the Biomedical Imaging Technology Center of Emory
University. Theywereall young adults (age 286) whowerefrom 3 groups includinginexposed healjh
controls (16 subjects), exposure with the absence of dysmorphic signs (14 subjects) and expbsure wit
presence of dysorphic signs (14 subjectspdénthananet al. 2009) The taskwas presented in blocks,

and the total scaimcluded 102 time points (the first 2 points are ignored). The 10 task blocks alternated
between a subtraction arithmetic task and a ketigiching control task. Singkhot T2*weighted EPI
images were acquired. The scanning parameters are TR/TE/FA/FOV of 38201s90/22cm,
resolution of 3.44mmx3.44mmx3mm, and dimension of 64x64x34. The preprocessing pipeline included
motion correction, slice time correction, spatial smootlifFiyHM=5mm), and global drift removal. The
preprocessed volumasere first registeredwith the MNI template using FSL FLIRTJénkinsoret al,

2001) After registration binary masksindicating voxelswith nonzerofMRI signalswere generatetbr

all subjects. Thgroupwise common mask was generated by conducting all single brain masks together
and this common mask is used to guide the extraction of vinale signalsin this way, each subject

have the same number of voxels and the voxels possess correspamttessesubjectsAs our work



mainly focused on the fluctuation shape of fMRI signals, we nornmalkseh extracted signal to have

zero mean and standard deviation of 1.

2.3 Dictionary Learning and Sparse Representation
In the framework of dictionary learning and sparse coding,considering a rich signal sét
OO O ¥a , a meaningfuland overcomplete dictionanOia  (m>t, m<<n) (Mairal et al.
2010)is required to be learned for sparse representati@Iofour approach, S BRI signal setfrom
the whole brains ahreegroups of subjects. V€ have two aim#or representing into a dictionary matrix
D and coefficient matribA (Eq.(2)) using the dictionary learning and sparse decoding method. 1) The
primary aim is to minimize the representation eremri2) It is supposed to learn an efficient dictionary
and concentrate the representation relevance, i.e., each signal can be repbgstrgechost relevant
dictionary atoms. Thus, the empirical cfistction is summarizeih Eq.(3 by considering the average
loss of representation afsignals.
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Here the loss function of eaclgisal sample is defined in Eq)(4in order to achieve our two aims and

tradeoff the representation error and concentration/ihegularization is employed.
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In order to make the coefficients in each row and columm\ @omparable, firstly, each in Sis
normalized to haveero mean and standard deviation of 1. Secahe columnsQ QB 8 Q are
constrained with Eq.{5 This isimplemented withan iterative normalization of dictionary atoms during
learning. Therefore the representationesidual of each signalis subject tonormal distribution, i.e.
-x 0 ™,
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In summay, the wholeprocedurecan be rewritten as a matriactorization problem in Eq.j6and the

online dctionary learning method in (Mairal et al., 201®ovides an effective strategy to learn the
dictionary and representation alternatively and optimaHgre, we employ the same assumption as
previous studies (Li et al. 2009; Lee et al. 2011; Li et al. 2012; Oikonomou et al. 2012; Abolghasemi et al.

2013) that the components of each voxel ds f MRI

componats is linear.

2.4 Groupwise Statistical Coefficient Maps

As the spatial organization of the signal samles predefined for each subjectSpand the dictionary
learning and sparse coding procedure Weébpthis organizationthe coefficient matrixd, preserves the
spatial informationThat is,if we map the coefficient matrix back to 3D brain mask, there willmbe
coefficient maps for each subje@roupwise assesnent ofthese coefficient maps requsravo setsof
correspondnce. The first one is component correspondence, which is established by the learned common
dictionary in our work. The second one is the correspondence of vastetd) is roughly achieved by
spatial normalization with themageregistration method and dhunified brain mask. In addition, the
normalization of the original fMRI signals and normalization of dictionary basis result in the normally
distributed representation errors, i-ex 0 mh, . As a resulteachsingle coefficient is comparable
across subjects, and the collection of each coeffidient a group of subjectsanalsobe regarded as
normal distribution Thus, TFtestis carried out to assess the rraro significance of each corresponding
coefficient This is one othe methodologicahoveltiesof this work in comparison with previous studies

of sparse re@sentation of fMRI signals (leeet al., 2011; Lv et al., 201Bv et al., 2013bYaroquauxet

al., 2011)



Specifically, asillustrated n Fig.2a, the A matrix can be decomposed into 3 matrices that represent three
groups. As further shown in Figh2 each group is composed of suhtrices of subjects, e.@, is
composed of.q, A€ A As the subjects are normalized in the MNI template space armbmthm@on
mask is thus employed to extract fMRI signae. thed "@Qin each submatrix stores the reference
coefficient of thg™ voxel to thei™ componentn the dictionary (Fig.B). For each group, we hypothesize
that each coefficieri  "@Qis groupwisely null, and the Fest (with Tdefined as Eq.{J is carried out
to test acceptance or rejection of the null hypothesis for each elémeiffQ Note thatx indicates the
group category, n denotes the subject ID in each gideie the threshold d#<0.05 is used to reject null
hypothesis. The derived-Value can be easily transfoed to the standardscore Beckmannet al.,
2003.
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Since the dictionary learning and sparse representation constrain the spaksitatak, the Ftest result
of 0 is also asparse matrix, as shown in Fig.2Here,each row in the matrix of Figc2represents the
statistically norzero contributionn the whole brain of each dictionagfom And each row can be
mapped back to brain volume, which stands for the spatial distribution of the dictadnaryNotably,
we call each dictionary atom and the correspondence distribution a network compohentiork. In
order toillustratethe significance of the contribution of each network, we eotatethe z-scores of each
componentwhich is named thetatistical coefficient mafSCM) hereg as illustrated in Fig@ The Ttest
is carried out separatefgr 6 B ©& & , but the deried zscores maps (such as FigsZiyl which
possess correspondence of the same dictionary atom, can be compared acrosSeyeugxamples of
voxels, whose-scores are 0.5, 1, 1.5, 2, 2.5, 3 and 3.5 inajdrike statistical coefficient map obwtrol
group, are shown in Fig.For each example voxel, thdack stars represent the coefficiealuein 16

subjects, and the red block indicates the mean value of black stars divided by their standard deviation



respectivelyWe can see that, theszore increases with the increasing of mean/std.th@alerivedz-

score is an effective statistical measurememhefignificance ofomponent contribution.

Conceptually,the SCM has several key differencés comparison with the widely used statistical
parametric mapping (SPMBéckmannet al., 2003 associated with the GLM methoBirst, mrameters
estimated fronthe GLM modelaremodel driven, andegressors angre-definedwith alimited number of
task mradigms While the SCM is based on a set of gravipely learned and optimizesignal bas, and
thus the abundantresponse patterns learned by ddtigen strategy fronfMRI datatend to bemore
effectiveto assess the rich information encoded in the Fd&a Secondthe SPM maps are clusters of
voxels whose signal are similar to task destgm, intensity of whichis thesignificance of similarity In
comparisonthe SCMmaps are decomposed overlapped brain networks, the intensity of whittte are
signficance of contribution of the networkThird, the commonly learned dictionary can effectively
leverage the commonness and discrimination across subjects and groups, which makesrttauSG
noise anccompaable across subjects and groupsurth,the sparsity cestraint regularizethe regressor
selection while learning coefficient, i.e., if the regressor does not significantly conttiteitegefficient
will be penalized as.0Consequentlythe results from grouponzero Ttest will be strictr. As a result

SCM mapsmight bemore reliable in measuring the significance of contribution than SPM.

3 Experimental Results

The frameworkhas beerapplied on the data set of three group®AE relatedsubjects:Gc, Gy andGp
(Santhanam et al., 2009)he severity of PAE is in the order G¢<Gy <Gp (Santhanam et al., 2009)he
common dictionary is learned for all three groups and the gnésg statistics in Section 2.4 was applied
to each group separately. We first detected arithanelited networks is¢ as reported in Section 3.1
and diverse dynamic networks in Sent®2 Further crosgroup comparisons Section 33 showed that

group differences can be observed in these networks



3.1 Inferred Arithmetic Related Networks

As mentionedbefore with the dictionary learning and sparse coding methodarietyof netwaks are
learned withtemporal and spati@spects of representatiaramely,the time series patterns ihand the
spatial maps irA. In order to interpret meaningfuletworks, we first compare time series patternd in

with the stimulus designand in this way taskcorrelated networks and aitéisk networkscan be
identified On the other handyased on the statistical coefficient mgS€M) derived from Section 2.4

and by using the experimentally determined threshold Z>1.65, we determined voxetsséhsighificant
reference to each dictionary atoMote thatin standardz-distribution, P (Z>1.65) =0.05 We select
Z>1.65 as the threshold, which is relatively | ower
coefficient matrix is sparse, and if one network is not significantly consistent the coefficient is punished
to be zero, which ia strict false posite control Thus, with a relative low but meaningful Z threshold,

we could possibly detect accurate network spatial m@ips. spatial distribution of task correlated

networks and ariask networks arthenexploredin this section

First, the task degin curve as shown in the top panel of Fiddis convolved with the hemodynamic

response function (HRF) f or cal cul ati ng P ef#e lvasneddictiormay atones! at i or
With the threshold (>0.5) and {&5) appliedto the correlations§ dominanttaskcorrelated networks and

6 dominantantitask networkswith relatively largevoxel numbersvereidentified, respectely, from alll

of the learned network#\s shown in Tabld, thepeakcorrelationand anticorrelationcould be as high

as 0.8B and-0.754 In comparison, the correlatisof original fMRI time serieswith the task stimulus

curve on thevolumetricvoxels that exhibithe highest and lowest-gcoresare shown in Tabl@. It is

evidentthat the dictionary learning method dsiite sensitive in detecting task correlated and-tagk

components even ithe group level of large data spacekor furtherexploration we visualized the6
dominantcomponent networks from both task correlated networks andasitnetworksywhosespatial

z-score maps (>1.65) and timeiss patterns are shown in Fig-4 and Fig.%-b respectively



In comparisonwith the groupwise activation detion from the GLM method (Figd), the networks
detected by ouapproachexhibit multiple taskactivatedpatterns Notably, the shapedifferences among
these temporal patterns sepadlatee generally defined activatisnby GLM into subnetworks For
instance the subnetworks in Fig.4 serve agarts of the activatiopatternsin Fig.4d. If we simply
aggregatd all the 6 task correlated mapdy a union operatonand name it atmskt he AU
correlatednetworks, as shown in Figdthe gatial pattern (Fig@) is quitesimilar as the activation
pattern inFig.4d. In order toquantitativelymeasure how mucbur networks cover the activation mape
calculatel thetrue positive rate (TPR) or sensitivig:

YO Y — Il
whereSMis the spatial map of oimferrednetworkgsubnetworksandT is the spatial map of thgroup
wise activationpatternin Fig.4d, whichis treatedas a template her&éhe TPRis measured for eacub
network in Table3 as well as h e fi Wfmetworke We can observe that these netwodaverthe
activation magpby GLM differently, and the most dominant cpanent #73overas high a®.7450f the
GLM-basedactivation.lt is interesting that their unioof our inferred suimetworkscoverabout 0.926f
the GLM-basedactivation. Similar qualitative and quantitative comparisons arep@gormedfor the
antitask networks as shown in Figahd Table3. The unim of the antitask network®xhibit 0.817TPR
of the GLM-baseddeactivation map in Figcb On the oher hand it is essential to inspect if these
networks are highly overlapped, j.#.these networks are spatially independent. Note AR does not
apply anymorein this situation because its uneven to treat any network as a template. Thacard
similarity is employed to calculatihe overlap rate (OR) as defined in.@) to measure theverlap
betweentask correlated networks and atask networks respectivelyn Eq.(9),0 and0 are spatial

maps of two networks. The overlap ratedefined by the intersection of two networks divided by their

union.




In the results shown in Tablg as we can seihatthe overlapbetweenthese taskcorrelated/anttask
networks are quite smak.g.,theaverageverlapis 0.05 for task correlated networks and.036 for the
antitask networks From these results, it is evident thhe taskrelated and antiask subnetworks

inferred by our methodre relatively spatial independent.

Additionally, the anatomicaistributionof the union of sulmetworks(Fig.4c and Fig.5cdetected by our
method is in agreement withe results in the previous worgnthananet al., 2009; Santhananet al,
2011) Task correlated networks are quite consistent with the activati@ctdd in the previaustudy
(Santhananet al, 2009) including regions of bilateral parietal lobe, medial frontal gyrus, and bilateral
middle frontal gyrus which are also shown in Fig.4@hese regions have been shown to be related to
arithmetic and working memorisanthananet al, 2009) Also, the anatomical distribution of the union

of deactivation suimetworks by our method#cluding theMPFC andthe PCC is akin to the previous
report (Santhananet al, 2011) as shown in Fig. 5dn summary, our method is capald&detecing
multiple meaningful taskelated and antiasksubnetworks the total ofwhich are in agreement with the
GLM-basd groupwise activation However,our method can providenuch more detais about the
temporally and spatially different sutetworks The interpretation of neuroscientific meanings of such

variety ofsubnetworks entails more effort in the future.

3.2 Diverse Dynamic Networks

In addition to the subetworks identified in Section 3.1, other sudtworks that incluel dominant
number of voxelsare also explored in this section. Through frequency analysis on these networks, we
observed diverse network dymas other than traditionally conceived activations and deactivations.
Specifically, by thresholding all of the statistical coefficient maps (SCMs) in the control group using
Z>1.65, we count the remaining voxel numbers in Fig.6a. The task correlatedksetmal antiask
networks are marked with red and blue respectively, from which we can see that some of them include

dominant numbers of voxels while some of them do not. Apart from the red and blue marks, there are also



certain networks that contain damant numbers of voxels, e.g., # 27, #126 and #180. We picked up 6

most dominant networks and visualized their spatial maps and temporal patterns inétgé6big.6b,

these networks are mainly located on the visual cortex, part of the default modekreatel subcortical
areas. The Pear sonds ave of thesé reetworks are relativety low, issskolwn i e s i ¢
Table 5. By inspecting their time series patterns in Fig.6c, it is interesting that the network components of
#27, #126, #180 an#256 exhibit high positive or negative impulses at the task change puitise

#248 shows magnitude increase in lettextching task and magnitude decrease in arithmetic task. Also,

#328 is similar to anttorrelation pattern but it involves more uncertain fluctuatidrtse periodical

reactionsof all these networkexhibit high relevance to the task desigarve, though they have quite

diverse dynamics. This might be the reason that they are overlooked by the GLM based activation

detection, and thus we call them diverse dynamic networks (DDN) in this paper.

To further explorehe diverse dynamic networKBDNs), we appled the Fourier transform to the time
series of the corresponding tianary network atoms, as shown in Fig.FFor comparison, the power
distributions of task correlated network #73 and-tagk network #82 aralsoshown in the top panels of
Fig.7. Since TR=3s and the period of a task cycle is 20 TRs, the task frequency is 1/(20x3s)=0.017 HZ.
The power of task and artiisk networks aralsoconcentrated on the task frequerafy0.017 HZ,as
expected. But thaliverse dynamic networkexhibited multiple frequencies. As shown in Fig.the
power of network #27, #126, #180 and #256 are mostly concentrated atddmshkieequenciegaround
0.034 HZ) or four times of task frequen@rgund0.068HZ). The networkcomponentst180 and #256
even have peaks at six times of task frequéacyund 0.10MHZ). The networksomponentst248 and
#328 are concentrated on the task frequency, but low frequency energy at around HZOG&®
contributes to the signal pattern##48 and therareother frequenies in#328.These diverse dynamic
networks provide evidence that there are multiple frequency respiontde human braito tasks, ana
certain brain region mighéxhibit multi-frequency response Also, these multifrequency response

cannot beeffectively detected byhe traditionalGLM-based methadlhese responses might ocetithe



brain ares thatare not directly responsible for arithmetit working memorybut are believed to
contributeto information input and attention regularizatiosuch asthe visual cortex, default model
network or subcortical areadn summary, lhe detectiorand characterizatioof these diverse dynamic

networksdemonstratethe advantage of our dictionary learninglasparse coding based framework.

33 Effects of PAE

As reported inthe literature (Santhanamet al, 2009; Santhananmet al, 2011) the activation and
deactivation regiontend toshrink with the increment of severity of PAE effect. We repeated the GLM
basel groupwise activation and deactivation detection with the FSL toolB®ckmannet al., 2003)

and similar resudt are achieveds shown in Fig.&nd Tables. In this session, we will explore if the size

of statistical coefficient mapg&CM) will be affected by the severity of PAE.

First, wecomparethe voxel number histograms of ath8stical coefficient maps fronthree groups of
subjects including controls, exposed faysmorphic PAE (NoiDys PAE) and exposed dysmorphic PAE
(Dysmorphic PAE) inFig.%-9c basel on the correspondence established by the common dicti@nary

The same threshold @>1.65 is chosen for all networks from three groupkbally, the voxel number
distribution is quite similar across three groups, especially the markeidatdnmetworks Notably,the
decreasing trend of voxel number can be observed with increment of severity of PAE, e.g.,-the task
correlated network #73 includ@around 2300 voxels in the control grouput it only includes around

1500 voxels in the NeDys PAE group ananly around 600 voxels the Dysmorphic PAE group

After sorting the voxel humber of each corresponding network in three giibups, be found thathe

size of most of the networks decreases with the increment of severity of PAE. We visualize the 6 most
dominant networks in Fig.10. Histogram of voxel numbers are shown in Fig.10a, and the decreasing trend
is quite evident. Also, thdiminutionis obsevable from the spatial maps in Fig.10b. Among these 6

networks, #73 and #390 are categorized into task correlated networks, #354 is considered #askn anti



network, and #27, #126 and #180 are believed to be three diverse dynamic networks, as discussed
Section 3.2. The diminution of tasklated networks include the left superior and right inferior parietal
regions and the medial frontal gyrus, which is in agreement with the activation detection in our work and
previous work inSanthananet al, 2009.The diminution of anttask network includes sutortical areas
andMPFC, and this concurs with previous work as w8&fthananet al, 2011). It is interesting that the
diverse dynamic networks, including visual cortex and default mode network, dlslo stth the more

severity of PAE.

Apart from thedominant networks shown in Fi@, we can also find somether minor networksthat
include lessnumbers ofvoxels. The network siseexhibit different patterns ofrelationship with the
severity of PAE as shown in Fig.2:12. In Fig.1%-11b, networks in the control group have the highest
voxel sizes, while the Dysmorphic groupasintermediatesizesand theNon-Dys grouphasthe lowest.
In conrast, for the networks in Fig.122b, the NonDys grouphasthe highest activation, the control
group performs intermediately, and the Dysmorphic grobpsthe lowest. Most of these networks are
considered asintrtask networks, and is evident that PAE effect might not be necessarily linear to
certain brain netorks. This effecneeds more future interpretatjdout it is inspiring that they can be
captured by our groupise sparse coding method.

4 Reproducibility Analysis
4.1 Simulation Experiment
To validate the effectiveness of our method on multiple group analysis, we designed an experiment based
on the fMRI simulation toolboxSimTB (http://mialab.mrn.org/softwareErhardt et al., 2012
Specifically,as shown in Fig.13 five components are simulate@vincomparable groups (10 subjects in
each) The spatial shapes of the components are shown in Fig.13a, and overlaps are designed between
component 2 and 5, and between component 3 aBflodk designed signals convolved by canonical

HRF are visualized in Fig.13b. Inteubject variability are simulated by 1~3 voxel (uniformly distributed)


http://mialab.mrn.org/software

x-translation, 1~3 voxel (uniformly distributed}tsanslation, and 1~5 degrees (uniformly distributed)
rotation. Crosgyroup difference are realized by different component sizes, i.e., the sizes of components in
the subjects of Group 1 is 1.3~1.5 times (uniformly distributed) larger than that of Group 2. Rician noise
is addedo each simulated subjects witte contrasto-noise ratio of 1~3 (uniformly distributed).

With our proposed method, we learn the common signal pattern dictionary from the two groups of
subjects. Since we already know the component number, we set the dictionary size as 5. As visualized in
Fig.13c, the simulated signals of components are welinstoucted. The SCMs are calculated for each
component of each group and are shown in Fig.13d and 13e. Since the simulation is based on very easy
assumption, the significance of components could be high, so that we chthosslibld as 2.0. We can
see tlat, the spatial maps of components from both groupseamnstructed, especially the component 1
with multiple regions. Also the components &3, 4) with overlaps are well recovered. Additionyall
comparing Fig.13d and Fig.13the size difference afomponents between two groups detectedas
designed, i.e., the SCMs of Group 1 are obviously larger than that of Gr@#s&d on the simulation,
we can conclude that our method is effective in reconstructing overlapped component networks from

multiple groups, and is capable of capturing gravipe differences at the network level.

4.2 Reproducibility with Different Dictionary Size

Dictionary size is an important parameter of dictionary learning and sparse coding. In our paper we
experimentally determe the dictionary size as 400. However, we also tried the dictionary size of 200,

300 and 500. Based on our experiments, we found that by increasing the dictionary size, the detected
net wor ks might decrease i n si zanight Bei dilded byymoret hat 0 s
dictionary atoms. And anot hemnetworlevllsbe decomgosed inta t i to
multiple component networks or similar networl&o in this paper, on the purpose of balancing
dictionary size and network divetgiwe determine the dictionary size as 400. But as shown in Fig.14,

with dictionary size set as 200, 300 and 500 the dominantrétestied network, antiask network and

diverse dynamic network could always be detected. And the spatial patterns (Fighd4t@rgoral



patterns (Fig.14c) are quite consistent across different dictionary sizes. From Fig.14a, we also found that
the group difference can also be consistently detected with different dictionary settings, i.e., the sizes of
network #73 and #27 dease with the increment of PAE severity and the size of networkoe@ the

pattern of V(Control)>V(Dys PAE) )>V(Nebys PAE). In smmary, we conclude that althdughe
dictionary size might impact the network size and diversity, the representativerkseteauld be
consistently reproduced with different dictionary size setting. And the group differences could also be

consistently captured by our methda summaryour method is reliable and reproducible.

5 Discussion andConclusion

51 Overview

In this paper, w have presented a novel grewmize sparse representation and statistical coefficient
mapping(SCM) approach for analyzing multipleopulationswith task fMRI data.The aggregated task
fMRI signals from multigroups of subjectsaare systematically represented aslearned common
collection of signal basis and their spatial coefficient distribution maps. Temporal and frequency analysis
on the dictionary basislucidated thaliversity of task evokedctivity patternsStatisticalasseawment of

the spatial maps across subjects and dgteap comparison providéne-granularity perspectivesof
detecting discriminatiahbetween brairtonditionsand normal contrel The approach has been applied
on three groups of subjects which are afféddy PAE in different degrees. Experimental results have
suggestedthat our datalriven groupwise method can detedliverse taskrelated brain networks
simultaneously, and these networks consistently exist across three groups lffiected in different

wayswith the increment of severity of PAE.

5.2 Methodological Advantage
The methodologicaladvantage of our sparse coding and statistical coefficient mapping (S&M)

summarized as follosv First,the groupwise common dictionarpasesare learned and optimized from



the whole fMRI datg which consist of abundant response patterns. Thus, they are more adaptive to
neurghysiology specification, more systematic in discoverdigerse brain networks, and more
sufficient in assessing rich imfmation encoded in thehole fMRI data than the traditional GLM method
Secondthe commonly learned dictionary can effectively leverage the commonness and discrimination
across subjects and groups, which makes the SCM more robust to noise and mond podetécting
crossgroup differences, which is greatly preferred by systematic clinical assessment, such aRiRAE

the sparsity constraint regularizes the regressor selection while learning coefficient, consequently the
results from group noemero T-test will be more strictAs a result SCM maps are more reliable in
measuring the significance of contributidtinally, in comparison with previous sparse representation of
fMRI signals of each individual brairer network analysisl(ee et al., 2011;v et al., 2014), our group

wise statisticalmethod can automatically establish their correspondences across different populations and
systematically assess the functional activity differences among these popul@orespondencef
individual componennetworks is established by learning the common dictionary basis from multiple
groups and subjectandthe spatial normalization of individual braiasdsignal extractiorguided by the

common maskrovides a foundation for statistical analysis and igteup comparison.

53 The Robustness of the Method

Sparsity, which is a major feature of our method, take the responsibility of detecting statistically robust
networks. In our method, the fMRI signal of each voxel from each subject was sparsely tegrbgen

the learned andptimized common signal basis. If one dictionary atom is not relevant to the certain signal,
the corresponding coefficient will be penalizedzero.In other words, the sparse constraint regularizes

the signal basis selectiofonsequentlymost elements of the coefficient matrix are zeros. Thus, the
voxels survived from Test in the SCMs have to be substantially and consistenthz rem o . That 6s
reasorthat most SCMs perform very low voxel number as shown in Fig.9. Asdeiactly in this way,

that the sparsity guaranteed the robustness of the networks.



The common dictionary learning from multiple grougdssubjects make our method less sensitive to
noises such as motionslost of the noises are individually speedj but the dictionaryis learnedto
represent common faaes across groups of subjects. Theither the noisewould be dropped in the
residualsof sparse representation be learned as dictionary atoms if the dictionary is big enough

Additionally, the learned activation signal patterns are more adaptive and flexible in the perspective of
hemodynamic function as shown in Fig.4b. While in traditional GLM method, the hemodynamic function
are usually prelefined and uniformed for the whole braiof different subjects And it 60s evi der
Fig.4, different activated brain regions might perform diffeteemodynamic functions. Thereforayr

method is also robust to hemodynamic variation.

5.4 Improvement of Analysis

Our proposed method was applied on the same data set of Santhanam et al. (2009). The major
contribution of Santhanam et al. (2009) is the finding of diminution of activation adtidation

relevant to the severity of PAE. In comparison, our method nigt @etect this kind of diminution in
activation/deactivation, but also refine the results in multiple activated emdfiwated networks, which
perform adaptive taskelated signal patterns. In addition, we also fotimel diminution is present in
multiple divese networks, which have not yéteendetected by traditional methods. Howevier,our

work, we also capturedhat diminution is not the only pattern that applies to all networks. hsvs in

Fig.11 and Fig.12, different patterns could be found diggrthe effect of PAE.

55 Challenges and Future Work

However, there are also challenges associated with this novel computational franfevedrikhere is
little neuroscienceevidence regardinpow many component networks should be decomposed for the
group of task fMRI signal seto far. As a resuliit is difficult to determine the learned dictionary size
theoretically Instead, ourcurrentresultswere based on experimentally determined netwvoumber.It

will be one of our majofuture works to optimize the network numb&econddue to thdack of ground



truth in fMRI, it is difficult to interpret the neuroscience meaning of all l#eened hundreds of brain
networks Thus more temporal, frequency and spatibbracterizatioomethodsshouldbe developedn
the near futurefor betterinterpretationof our resultsFinally, this novel framework should be applied in
other task fMRI datasets of brain conditions and contralgrider to examine its reproducibility and
robustnesslt is believed that this framewonkould find many applications in clinical and cognitive

neurosciencein the future.
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Tables

Table 1.P e a r sareldian and anttorrelation between time series of dominant networks and HRF

convolved task design.

Task Comp. ID # 73 149 | 185 | 308 | 312 | 390 | Avg.

Correlated

Correlation

0.813 | 0.567 | 0.627 0.610 0.585 | 0.793 0.666

Anti-Task Comp. ID # 82 94 274 | 326 | 331 | 354 | Avg.

Correlation

-0.754 | -0.690 | -0.579 | -0.747 | -0.626 | -0.556 -0.659

Table 2. (a). TheP e a r <arreldians of top activated voxels from 8 subjects. As shown in the third
row, the voxels exhibit the highestszore in each subject. (b) TRee a r samtHoodralations of top

deactivated voxels from 8 subject$ie voxels exhibit the lowestscore n each subject.



(@)

Subject 1 2 3 4 5 6 7 8 Avg.

Voxel (26,46,12)| (32,22,2) | (30,15,3) | (45,35,23)| (49,21,10)| (41,34,24)| (46,38,15)| (4820,9)

Z-score 6.80 6.87 6.59 9.06 7.08 6.26 10.82 | 7.96 7.68
Correlation | 0.654 | 0.668 | 0.707 | 0.819 | 0.763 | 0.672 | 0.703 | 0.765 | 0.719

(b)

Subject 1 2 3 4 5 6 7 8 Avg.

Voxel (3055,10) | (31,15,26) | (3344,11) | (365218) | (4331,19) | (31,4312) | (31,27,32) | (344814
Z-score -6.56 | -7.37 | -6.08 | -742 | -9.03 | -6.35 | -7.73 | -841 | -7.37
Correlation | -0.369 | -0.669 | -0.390 | -0.695 | -0.728 | -0.647 | -0.697 | -0.436 | -0.579

Table 3. The true positive rate (TPR) of task correlated network componentdaskttomponents and

their union respectively in the growyise activation and deactivation maps.

Task | CompID | #73 | #149 | #185| #308 | #312 | #390 | Union
TPR 0.745 | 0209 | 0393 | 0132 | 0,001 | 0.434 | 0.926

Anti- | ComplD #82 | #94 | #274 | #326 | #331 | #354 | Union

Task | TPR 0.376 | 0.068 | 0.133 | 0.214 | 0.049 | 0632 | 0.817

Table 4.(a) Thespatial overlap ratio (OR) among the 6 task correlated networkEhégpatialoverlap

ratio (OR) among the 6 arsk networks.

(@)
OR #73 #149 #185 #308 #312 #390
#73
1.000 0.032 0.161 0.030 0.088 0.107




(b)

Table 5. T h e Pear sonods

HRF-convolved task design curve.

correl ations bet ween

DDN

Comp.ID# | #27

#126 | #180

#248 | #256 | #328

Correlation 0.239

-0.031 0.170

-0.265 0.043 -0.411

t

h e

t i me

Table 6. Voxel numbers ofyroupwise activation regions and deactivation from GLM based method in

three groups by using different levels of threshold. The activation using threshold Z>3.0 and deactivation

using threshold Z<8.0 are visualized in Fig.8.

Activation Control Non-Dys PAE | Dysmorphic PAE
7>2.5 4906 3096 3057
Z>3.0 2630 1373 1276




Z>3.5 1103

461 437

Z>4.0 364

113 100

Deactivation Control

Non-Dys PAE | Dysmorphic PAE

7<-2.5 6163 5955 2484
Z<-3.0 3100 3098 787
Z<-3.5 1315 1165 148
Z<-4.0 487 241 18

Figures:

Voxel number:
n =N, =...=n,

o 00
Dictionary|
Matrix

inter-group
Comparison

Fig.1. The computational framework of growgise sparse representation of fMRI signals from three

different groups of subject¢a) FMRI signals from one single subject are extracted as a ritrix

unified mask in the MNI space guides the signal exa. (b) Signal matrices from three groups of

subjects are aggregated into one big signal m&ti.: Healthy control, G: Non-dysmorphic PAE, &



Dysmorphic PAE. Here t indexes the fMRI time series po{a)sThe learned signal dictionary matfix

ard the corresponding coefficient matéxare generated by applying the dictionary learning and sparse
coding on the signal matrix. Note that thenatrix preserves the organization of subjects and grous in
(d) Activity patterns can be selected from thematrix, and coefficient matriA can be statistically

interpreted as grouwise spatial patterns. Afterwards, ingmoup comparison is carried out.

Coefficient Matrix

T-test result:
H(A¢ C.__,)

Comparison

Fig.2. (a) A matrix is composed of three groups of subjects. (b) Correspondence of elententsuiial
groupwise null hypothesis -Test for each element. (¢) The grewjse T-test results of acceptance of null
(black dots) or rejection (white dotspP<0.05). (d) Each row in (c), which represents a network
component, is mapped backttee brain volumecolor-coded with zscores. (e) and (f) arescore maps

derived fromGy andGp with the same method of ().
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Fig.3. The coefficient distribution of 7 example voxels in 16 subjects from the control group.-The z
scores of the five voxels are 0.5, 1.0, 1.5é¢é¢ 3.5
from 16 subjects, and the red block indicates the mahare of the black stars divided by the standard

deviation of the black stars.
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Fig.4. (a) The zscore mafZ>1.65) of theb networksexhibiting high correlation with task desighiNI
spac8. (b) The corresponding signal patterngimf the6 networkcomponents.(c) Groupwise union of
the highly taskelated networks. (d) Groupise activation detected by the GLM meth@®3.0, cluster

correctior).



Fig.5. (a) The zscore map of thé networks (Z>1.65performing high antcorrelation with task design
(MNI spacé. (b) The corresponding signal patternsbrof the 6 network components(c) Groupwise
union of the highly antiask networks. (d) Grouwise deactivation detected by the GLM meth@gk-

3.0, clustercorrection.



