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Abstract  

Task-based fMRI activation mapping has been widely used in clinical neuroscience in order to assess 

different functional activity patterns in conditions such as prenatal alcohol exposure (PAE) affected brains 

and healthy controls. In this paper, we propose a novel, alternative approach of group-wise sparse 

representation of the fMRI data of multiple groups of subjects (healthy control, exposed non-dysmorphic 

PAE and exposed dysmorphic PAE) and assess the systematic functional activity differences among these 

three populations. Specifically, a common time series signal dictionary is learned from the aggregated 

fMRI signals of all three groups of subjects, and then the weight coefficient matrices (named statistical 

coefficient map (SCM)) associated with each common dictionary were statistically assessed for each 

group separately. Through inter-group comparisons based on the correspondence established by the 

common dictionary, our experimental results have demonstrated that the group-wise sparse coding 

strategy and the SCM can effectively reveal a collection of brain networks/regions that were affected by 

different levels of severity of PAE. 
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1. INTRODUCTION 

Task-based fMRI has been widely used to identify brain regions that are functionally involved in specific 

task performance, and has significantly advanced our understanding of functional localizations within the 

brain (Friston et al., 1994; Heeger and Ress, 2002; Matthews and Jezzard, 2004; Logothetis et al., 2008). 

In the functional neuroimaging community, there have been a variety of model-based or data-driven 

approaches for fMRI time series analysis and/or activation detection, for instances, correlation analysis 

(Bandettini et al., 1993), general linear model (GLM) (Friston et al., 1994; Worsley, 1997), statistic 

testing (Ardekani et al., 1998), principal component analysis (PCA) (Andersen et al., 1999), Markov 

random field (MRF) models (Descombes et al., 1998), mixture models (Hartvig and Jensen, 2000), 

independent component analysis (ICA) (McKeown et al., 1998), clustering analysis (Baumgartner et al., 

1997), wavelet algorithms (Bullmore et al., 2003; Shimizu et al., 2004), autoregressive spatial models 

(Woolrich et al., 2004a), Bayesian approaches (Huaien and Puthusserypady, 2007; Bowman et al., 2008), 

and empirical mean curve decomposition (Deng et al., 2012). Among all of these methods, GLM is one of 

the most widely used methods (Friston et al., 1994; Worsley et al., 1997) due to its effectiveness, 

simplicity and robustness. In particular, several popular fMRI data analysis software packages such as the 

FSL FEAT (http://www.fmrib.ox.ac.uk/fsl/feat5/index.html), SPM (http://www.fil.ion.ucl.ac.uk/spm/) 

and AFNI (http://afni.nimh.nih.gov/afni/) have employed the GLM method (Friston et al., 1994; Worsley 

et al., 1997).   

 

In addition to the abovementioned voxel-wise methods, in order to deal with the remarkable individual 

variability and different sources of noises (e.g., Thirion et al., 2007; Derrfuss and Mar, 2009; Laird et al., 



2009; Hamilton, 2009; Costafreda, 2009; Tahmasebi, 2010), group-wise task fMRI activation detection 

methods have been developed, such as the two-level group-wise GLM method (Beckmann et al., 2003), 

Bayesian inference (Woolrich et al., 2004b), multi-level analysis (Thirion et al., 2007), group ICA 

analysis (Calhoun et al., 2009), FENICA (Schöpf et al.,2011), group Markov Random Field (MRF) 

methods (Ng et al., 2010), and our recently developed DICCCOL-based group-wise activation detection 

(Lv et al., 2014a).  For instance, the FSL FEAT/FLAME toolkits (Beckmann et al., 2003; Smith et al., 

2004) incorporated a two-level group-wise GLM analysis procedure that warps the individual activation 

significance maps to the same template space via image registration methods (e.g., FSL FLIRT), and then 

infers the group-wise significantly activated regions from the pooled activation maps. The major 

advantages of this two-level GLM method include the facilitation of valid group analyses and inference, 

good flexibility and generality, and easy and meaningful interpretation of results (Beckmann et al., 2003; 

Smith et al., 2004). In our recently developed DICCCOL (dense individual and common connectivity-

based cortical landmarks)-based group-wise activation detection (Lv et al., 2014a), the first-level GLM 

analysis was first performed on the fMRI signal of each corresponding DICCCOL landmark in individual 

brain’s own space, and then the estimated effect sizes of the same landmark from a group of subjects are 

statistically assessed with the mixed-effect model at the group level. Finally, the consistently activated 

DICCCOL landmarks are determined and declared in a group-wise fashion in response to external block-

based stimuli. The advantage of this method is that these statistical inferences based on the intrinsically-

established DICCCOL correspondences among a group of subjects can be more reliable and robust to the 

variability in individual activation magnitudes and the evoked brain networks.   

 

Although these abovementioned methods leveraged the statistical power from multiple brains in order to 

gain the robustness to noises and the less sensitivity to individual variability, challenges still exist. First, 

although the statistical activation maps can be estimated group-wisely in spite of the variability of 

individual anatomy with image registration methods, the consistency and diversity of dynamic temporal 

responses evoked by task performance cannot be systematically assessed group-wisely. Second, it has 



been difficult to model multiple concurrent brain responses from different spatially-overlapping brain 

networks. Specifically, from a human neuroscience perspective, it has been widely reported and argued 

that a variety of cortical regions and networks exhibit strong functional diversity (Duncan, 2010; 

Gazzaugia, 2004; Pessoa, 2012), that is, a cortical region could participate in multiple functional 

domains/processes and a functional network might recruit various heterogeneous neuroanatomic areas 

(Gazzaugia, 2004; Pessoa, 2012). Therefore, it is possible that heterogeneous regions and diverse 

activities participating in a task performance could be overlooked by brain activity modeling methods. As 

a consequence, it is challenging for model-driven task fMRI data analysis methods to reconstruct 

concurrent functional networks and assess systematic activity differences across populations. 

 

In recognition of the above challenges, researchers, including ourselves, have decomposed fMRI signals 

into linear combinations of multiple components based on data-driven sparse representation of whole-

brain fMRI signals (Lee et al., 2011; Lv et al., 2013; Lv et al., 2014b; Lv et al., 2015; Varoquaux et al., 

2011 ). The basic idea of this computational methodology is to aggregate all of dozens (or hundreds) of 

thousands of fMRI signals within the whole brain of one subject into a big data matrix, which is 

subsequently factorized into an over-complete dictionary basis matrix and a reference weight matrix via 

dictionary learning and sparse coding algorithms (Mairal et al., 2010). Then, the time series of each over-

complete basis dictionary represents the functional activities of a brain network and its corresponding 

reference weight vector stands for the spatial map of this brain network (Lv et al., 2013; Lv et al., 2014b; 

Lv et al., 2015). An important characteristic of this framework is that the decomposed reference weight 

matrix naturally reveals the spatial overlap/interaction patterns among reconstructed brain networks (Lv et 

al., 2014b). Thus this novel data-driven strategy naturally accounts for that a brain region might be 

involved in multiple functional processes (Duncan, 2010; Gazzaugia, 2004; Pessoa, 2012) and its fMRI 

signal is composed of various components (Lee et al., 2011; Lv et al., 2013; Lv et al., 2014b; Lv et al., 

2015; Varoquaux et al., 2011).   

 



However, an unsolved problem in previous methods of sparse representation of fMRI signals (Lee et al., 

2011; Lv et al., 2013; Lv et al., 2014b; Varoquaux et al., 2011) is how to establish the correspondence of 

different dictionary components across individuals and populations. Specifically, works in (Lee et al., 

2011; Lv et al., 2014b; Lv et al., 2015) performed dictionary learning and sparse coding on whole brain 

fMRI signals and interesting functional networks of meaningful temporal and spatial patterns can be 

detected among all the learned components. But it is difficult to perform inter-subject comparison or 

statistical analysis mainly because the data-driven dictionary learning and sparse coding method applied 

on individuals learned brain networks by taking account of individual specificity adaptively (Lee et al., 

2011; Lv et al., 2014b), and correspondence cannot be established across subjects. A common dictionary 

is learned from the task fMRI signals of a group of subjects in Lv et al., 2013, so that group-wise analysis 

could be established based on the correspondence of the common dictionary basis. However, inter-group 

comparison is usually required for clinical research such as assessing the differences of functional brain 

activities between brain conditions such as prenatal alcohol exposure (PAE) (Coles et al., 1991; 

Santhanam et al. 2009) and healthy controls. So far, establishing correspondence across groups as well as 

across subjects is an important problem that has not been sufficiently investigated before. Another 

important issue is the variability in fMRI analysis and group-wise methods. In other words, there is 

remarkable variability of activation magnitudes for the corresponding brain regions across individual 

subjects and imaging sessions (Smith et al., 2005; Thirion et al., 2007), due to physiological noises, 

head/body motion, resting-state activity and other factors. This variability imposes additional challenges 

to the robust and reliable inference of group-wise consistent functional networks. 

 

In responses to the above challenges, in this paper, we propose a novel computational framework of 

group-wise sparse representation of the fMRI datasets of multiple groups of subjects (healthy control, 

exposed non-dysmorphic PAE and exposed dysmorphic PAE (Santhanam et al., 2009) and 

comprehensively assess the systematic functional activity differences among these three populations. 

Specifically, fMRI signals from all of the three groups of subjects are aggregated as training samples to 



learn a common time series signal dictionary, which would establish component correspondence across 

subjects and groups. Before the extraction of fMRI signals, each subject has been registered into the MNI 

atlas space, in which the voxel correspondence is roughly established across all subjects and groups based 

on a unified brain mask which covers common region of all brains. After sparse coding using the online 

dictionary method (Mairal et al., 2010), statistical assessment is performed on the weight coefficient 

matrices, named statistical coefficient map (SCM) here, associated with each common dictionary for each 

group separately. By comparing the inter-group differences based on the correspondence established by 

the common dictionary, our experimental results demonstrated that the group-wise sparse coding strategy 

can effectively elucidate different levels of effect of PAE in a collection of brain networks/regions. 

 

2. MATERIALS AND METHODS 

2.1. Overview 

Our computational pipeline is summarized in Fig.1. First, subjects from 3 groups (GC: Healthy control, 

GN: Non-dysmorphic PAE, GD: Dysmorphic PAE (Santhanam et al., 2009) are spatially normalized into 

the standard MNI space via linear image registration method FSL FLIRT (Jenkinson et al., 2001). Then, 

by using a standardized group common brain mask, whole-brain fMRI signals of each subject are 

extracted and aggregated into a 2D signal matrix 𝑆𝑥ϵℝt×nx , as shown in Fig.1a. Then all extracted signal 

matrices from 3 groups are pooled and arranged into a big matrix Sϵℝt×n as shown in Fig.1b. Note that S 

is composed of three groups of subjects here: 

𝑆 = [𝑆𝐺𝐶
, 𝑆𝐺𝑁

, 𝑆𝐺𝐷
],           𝑆𝐺𝐶

= [𝑆𝑐1, 𝑆𝑐2, … 𝑆𝑐𝑘], 

𝑆𝐺𝑁
= [𝑆𝑁1, 𝑆𝑁2, … 𝑆𝑁𝑘],          𝑆𝐺𝐷

= [𝑆𝐷1, 𝑆𝐷2, … 𝑆𝐷𝑘]                         (1) 

Our computational framework then employs the online dictionary learning and sparse coding method 

(Mairal et al., 2010), which factorizes the signal matrix S into a time series signal dictionary matrix D and 

the coefficient matrix A (Fig.1c). Note that D is learned to be commonly shared across three groups by 

assuming that the same task would stimulate similar or comparable functional responses in these 



individual brains, and the A matrix preserves the spatial voxel organization and group correspondence of 

S (Fig.1c), i.e., 𝐴 = [𝐴𝐺𝐶
, 𝐴𝐺𝑁

, 𝐴𝐺𝐷
]ϵℝm×n . Through temporal or frequency analysis of matrix D, 

meaningful task-evoked responses can be interpreted. In particular, based on the component 

correspondence established by the common D and voxel correspondence built up by the standard common 

mask, statistical group-wise consistent coefficient mapping can be performed for each group separately. 

Notably, the cross-group correspondence established by the common D also provides us a foundation for 

later inter-group comparison. 

 

2.2   Data Acquisition and Pre-processing 

In an arithmetic task-based fMRI experiment under IRB approval, 44 participants were scanned in 3T 

Siemens Trio scanner (Santhanam et al. 2009) at the Biomedical Imaging Technology Center of Emory 

University. They were all young adults (age 20-26) who were from 3 groups including unexposed healthy 

controls (16 subjects), exposure with the absence of dysmorphic signs (14 subjects) and exposure with 

presence of dysmorphic signs (14 subjects) (Santhanam et al. 2009). The task was presented in blocks, 

and the total scan included 102 time points (the first 2 points are ignored). The 10 task blocks alternated 

between a subtraction arithmetic task and a letter-matching control task. Single-shot T2*-weighted EPI 

images were acquired. The scanning parameters are TR/TE/FA/FOV of 3000ms/32ms/90
o
/22cm, 

resolution of 3.44mm×3.44mm×3mm, and dimension of 64×64×34. The preprocessing pipeline included 

motion correction, slice time correction, spatial smoothing (FWHM=5mm), and global drift removal. The 

preprocessed volumes were first registered with the MNI template using FSL FLIRT (Jenkinson et al., 

2001). After registration, binary masks indicating voxels with non-zero fMRI signals were generated for 

all subjects. The group-wise common mask was generated by conducting all single brain masks together 

and this common mask is used to guide the extraction of whole-brain signals. In this way, each subject 

have the same number of voxels and the voxels possess correspondence across subjects. As our work 



mainly focused on the fluctuation shape of fMRI signals, we normalized each extracted signal to have 

zero mean and standard deviation of 1. 

 

2.3   Dictionary Learning and Sparse Representation 

In the framework of dictionary learning and sparse coding, by considering a rich signal set  S =

[s1, s2, … sn]ϵℝt×n  , a meaningful and over-complete dictionary 𝐷𝜖ℝ𝑡×𝑚  (m>t, m<<n) (Mairal et al. 

2010) is required to be learned for sparse representation of S. In our approach, S is fMRI signal set from 

the whole brains of three groups of subjects. We have two aims for representing S into a dictionary matrix 

D and coefficient matrix A (Eq.(2)) using the dictionary learning and sparse decoding method. 1) The 

primary aim is to minimize the representation error; and 2) It is supposed to learn an efficient dictionary 

and concentrate the representation relevance, i.e., each signal can be represented by the most relevant 

dictionary atoms. Thus, the empirical cost function is summarized in Eq.(3) by considering the average 

loss of representation of n signals. 

  𝑆 = 𝐷𝐴 + 𝜀                                                                           (2) 

𝑓𝑛(𝐷) ≜
1

𝑛
∑ ℓ(𝑠𝑖, 𝐷),                                                                 

𝑛

𝑖=1

(3) 

Here the loss function of each signal sample is defined in Eq.(4). In order to achieve our two aims and 

trade-off the representation error and concentration, the ℓ1 regularization is employed. 

ℓ(𝑠𝑖, 𝐷) ≜ 𝑚𝑖𝑛
𝛼𝑖𝜖ℝ𝑚

1

2
||𝑠𝑖 − 𝐷𝐴𝑖||2

2 + 𝜆||𝐴𝑖||1                                     (4) 

In order to make the coefficients in each row and column of A comparable, firstly, each 𝑠𝑖  in S is 

normalized to have zero mean and standard deviation of 1. Second, the columns 𝑑1, 𝑑2, … … 𝑑𝑚  are 

constrained with Eq.(5). This is implemented with an iterative normalization of dictionary atoms during 

learning. Therefore, the representation residual of each signal is subject to normal distribution, i.e. 

𝜀𝑖  ~𝑁(0, 𝜎2). 

𝐶 ≜ {𝐷𝜖ℝ𝑡×𝑚   𝑠. 𝑡.   ⩝ 𝑗 = 1, … 𝑚, 𝑑𝑗
𝑇𝑑𝑗 ≤ 1}                                           (5) 



min
𝐷𝜖𝐶,𝛼𝜖ℝ𝑚×𝑛 

1

2
||𝑆 − 𝐷𝐴||𝐹

2 + 𝜆||𝐴||1,1                                                      (6) 

In summary, the whole procedure can be rewritten as a matrix factorization problem in Eq.(6), and the 

online dictionary learning method in (Mairal et al., 2010) provides an effective strategy to learn the 

dictionary and representation alternatively and optimally. Here, we employ the same assumption as 

previous studies (Li et al. 2009; Lee et al. 2011; Li et al. 2012; Oikonomou et al. 2012; Abolghasemi et al. 

2013) that the components of each voxel’s fMRI signal are sparse and the neural integration of those 

components is linear.  

 

2.4   Group-wise Statistical Coefficient Maps 

As the spatial organization of the signal samples are predefined for each subject in Sx and the dictionary 

learning and sparse coding procedure will keep this organization, the coefficient matrix Ax preserves the 

spatial information. That is, if we map the coefficient matrix back to 3D brain mask, there will be m 

coefficient maps for each subject. Group-wise assessment of these coefficient maps requires two sets of 

correspondence. The first one is component correspondence, which is established by the learned common 

dictionary in our work. The second one is the correspondence of voxels, which is roughly achieved by 

spatial normalization with the image registration method and the unified brain mask. In addition, the 

normalization of the original fMRI signals and normalization of dictionary basis result in the normally 

distributed representation errors, i.e., 𝜀𝑖 ~𝑁(0, 𝜎2). As a result, each single coefficient is comparable 

across subjects, and the collection of each coefficient from a group of subjects can also be regarded as 

normal distribution. Thus, T-test is carried out to assess the non-zero significance of each corresponding 

coefficient. This is one of the methodological novelties of this work in comparison with previous studies 

of sparse representation of fMRI signals (Lee et al., 2011; Lv et al., 2013; Lv et al., 2013b; Varoquaux et 

al., 2011).  

 



Specifically, as illustrated in Fig.2a, the A matrix can be decomposed into 3 matrices that represent three 

groups. As further shown in Fig.2b, each group is composed of sub-matrices of subjects, e.g., 𝐴𝐺𝐶
 is 

composed of Ac1, Ac2… Ack. As the subjects are normalized in the MNI template space and the common 

mask is thus employed to extract fMRI signals. So the 𝐴𝑛(𝑖, 𝑗) in each sub-matrix stores the reference 

coefficient of the j
th
 voxel to the i

th
 component in the dictionary (Fig.2b). For each group, we hypothesize 

that each coefficient 𝐴𝐺𝑥
(𝑖, 𝑗) is group-wisely null, and the T-test (with T defined as Eq.(7)) is carried out 

to test acceptance or rejection of the null hypothesis for each element 𝐴𝐺𝑥
(𝑖, 𝑗). Note that x indicates the 

group category, n denotes the subject ID in each group. Here the threshold of P<0.05 is used to reject null 

hypothesis. The derived T-value can be easily transformed to the standard z-score (Beckmann et al., 

2003).  

𝑇(𝑖, 𝑗) =
𝐴𝐺𝑥

(𝑖,𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

√𝑉𝑎𝑟(𝐴𝐺𝑥
(𝑖,𝑗))/𝑛

  ,               𝐴𝐺𝑥
(𝑖, 𝑗) = {𝐴𝑛(𝑖, 𝑗): 𝑛 = 1, 2, ⋯ 𝑥𝑘}.  (𝑥 = 𝐶 𝑜𝑟 𝑁 𝑜𝑟 𝐷),                       

𝐴𝐺𝑥
(𝑖, 𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

1

𝑛
∑ 𝐴𝑛(𝑖, 𝑗)𝑥𝑘

𝑛=1 ,            𝑉𝑎𝑟 (𝐴𝐺𝑥
(𝑖, 𝑗)) = 

1

𝑛
∑ (𝐴𝑛(𝑖, 𝑗) − 𝐴𝐺𝑥

(𝑖, 𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )2𝑥𝑘
𝑛=1              (7) 

Since the dictionary learning and sparse representation constrain the sparsity of A matrix, the T-test result 

of 𝐴𝐺𝑥
 is also a sparse matrix, as shown in Fig.2c. Here, each row in the matrix of Fig.2c represents the 

statistically non-zero contribution in the whole brain of each dictionary atom. And each row can be 

mapped back to brain volume, which stands for the spatial distribution of the dictionary atom. Notably, 

we call each dictionary atom and the correspondence distribution a network component in this work. In 

order to illustrate the significance of the contribution of each network, we color-code the z-scores of each 

component, which is named the statistical coefficient map (SCM) here, as illustrated in Fig.2d. The T-test 

is carried out separately for  𝐴𝐺𝐶
, 𝐴𝐺𝑁

𝑎𝑛𝑑 𝐴𝐺𝐷
, but the derived z-scores maps (such as Figs.2d-2f), which 

possess correspondence of the same dictionary atom, can be compared across groups. Seven examples of 

voxels, whose z-scores are 0.5, 1, 1.5, 2, 2.5, 3 and 3.5 in one of the statistical coefficient map of control 

group, are shown in Fig.3. For each example voxel, the black stars represent the coefficient value in 16 

subjects, and the red block indicates the mean value of black stars divided by their standard deviation 



respectively. We can see that, the z-score increases with the increasing of mean/std.  So, the derived z-

score is an effective statistical measurement of the significance of component contribution. 

 

Conceptually, the SCM has several key differences in comparison with the widely used statistical 

parametric mapping (SPM) (Beckmann et al., 2003) associated with the GLM method. First, parameters 

estimated from the GLM model are model driven, and regressors are pre-defined with a limited number of 

task paradigms. While the SCM is based on a set of group-wisely learned and optimized signal basis, and 

thus the abundant response patterns learned by data-driven strategy from fMRI data tend to be more 

effective to assess the rich information encoded in the fMRI data. Second, the SPM maps are clusters of 

voxels whose signal are similar to task design, the intensity of which is the significance of similarity. In 

comparison, the SCM maps are decomposed overlapped brain networks, the intensity of which are the 

significance of contribution of the network. Third, the commonly learned dictionary can effectively 

leverage the commonness and discrimination across subjects and groups, which makes the SCM robust to 

noise and comparable across subjects and groups. Fourth, the sparsity constraint regularizes the regressor 

selection while learning coefficient, i.e., if the regressor does not significantly contribute, the coefficient 

will be penalized as 0. Consequently, the results from group non-zero T-test will be stricter. As a result, 

SCM maps might be more reliable in measuring the significance of contribution than SPM.    

 

3 Experimental Results 

The framework has been applied on the data set of three groups of PAE related subjects: GC, GN and GD 

(Santhanam et al., 2009). The severity of PAE is in the order of GC<GN <GD (Santhanam et al., 2009). The 

common dictionary is learned for all three groups and the group-wise statistics in Section 2.4 was applied 

to each group separately. We first detected arithmetic-related networks in GC as reported in Section 3.1 

and diverse dynamic networks in Section 3.2. Further cross-group comparisons in Section 3.3 showed that 

group differences can be observed in these networks. 



 

3.1 Inferred Arithmetic Related Networks  

As mentioned before, with the dictionary learning and sparse coding method, a variety of networks are 

learned with temporal and spatial aspects of representation, namely, the time series patterns in D and the 

spatial maps in A. In order to interpret meaningful networks, we first compare time series patterns in D 

with the stimulus design, and in this way task-correlated networks and anti-task networks can be 

identified. On the other hand, based on the statistical coefficient maps (SCM) derived from Section 2.4 

and by using the experimentally determined threshold Z>1.65, we determined voxels that have significant 

reference to each dictionary atom. Note that in standard z-distribution, P (Z>1.65) =0.05. We select 

Z>1.65 as the threshold, which is relatively lower than traditional activation analysis. That’s because our 

coefficient matrix is sparse, and if one network is not significantly consistent the coefficient is punished 

to be zero, which is a strict false positive control. Thus, with a relative low but meaningful Z threshold, 

we could possibly detect accurate network spatial maps. The spatial distribution of task correlated 

networks and anti-task networks are then explored in this section.  

 

First, the task design curve as shown in the top panel of Fig.4b is convolved with the hemodynamic 

response function (HRF), for calculating Pearson’s correlation with all of the learned dictionary atoms. 

With the threshold (>0.5) and (<-0.5) applied to the correlations, 6 dominant task-correlated networks and 

6 dominant anti-task networks with relatively large voxel numbers were identified, respectively, from all 

of the learned networks. As shown in Table 1, the peak correlation and anti-correlation could be as high 

as 0.813 and -0.754. In comparison, the correlations of original fMRI time series with the task stimulus 

curve on the volumetric voxels that exhibit the highest and lowest z-scores are shown in Table 2. It is 

evident that the dictionary learning method is quite sensitive in detecting task correlated and anti-task 

components even in the group level of large data space. For further exploration, we visualized the 6 

dominant component networks from both task correlated networks and anti-task networks, whose spatial 

z-score maps (>1.65) and time series patterns are shown in Fig.4a-b and Fig.5a-b respectively.  



 

In comparison with the group-wise activation detection from the GLM method (Fig.4d), the networks 

detected by our approach exhibit multiple task-activated patterns. Notably, the shape differences among 

these temporal patterns separated the generally defined activations by GLM into sub-networks. For 

instance, the sub-networks in Fig.4a serve as parts of the activation patterns in Fig.4d. If we simply 

aggregated all the 6 task correlated maps (by a union operation) and name it as the “Union” of task 

correlated networks, as shown in Fig.4c, the spatial pattern (Fig.4c) is quite similar as the activation 

pattern in Fig.4d. In order to quantitatively measure how much our networks cover the activation map, we 

calculated the true positive rate (TPR) or sensitivity as:  

𝑇𝑃𝑅 =
𝑆𝑀∩𝑇

𝑇
                                                                                      (8)                      

where SM is the spatial map of our inferred networks/sub-networks and T is the spatial map of the group-

wise activation pattern in Fig.4d, which is treated as a template here. The TPR is measured for each sub-

network in Table 3 as well as the “Union” of networks. We can observe that these networks cover the 

activation map by GLM differently, and the most dominant component #73 cover as high as 0.745 of the 

GLM-based activation. It is interesting that their union of our inferred sub-networks cover about 0.926 of 

the GLM-based activation. Similar qualitative and quantitative comparisons are also performed for the 

anti-task networks as shown in Fig.5 and Table 3. The union of the anti-task networks exhibit 0.817 TPR 

of the GLM-based deactivation map in Fig.5d. On the other hand, it is essential to inspect if these 

networks are highly overlapped, i.e., if these networks are spatially independent. Note that, TPR does not 

apply anymore in this situation, because it is uneven to treat any network as a template. Thus, Jaccard 

similarity is employed to calculate the overlap rate (OR) as defined in Eq.(9) to measure the overlap 

between task correlated networks and anti-task networks respectively. In Eq.(9), 𝑁𝑎 and 𝑁𝑏 are spatial 

maps of two networks. The overlap rate is defined by the intersection of two networks divided by their 

union. 

𝑂𝑅 =
𝑁𝑎 ∩ 𝑁𝑏

𝑁𝑎 ∪ 𝑁𝑏
                                                                                      (9) 



In the results shown in Table 4, as we can see that the overlap between these task-correlated/anti-task 

networks are quite small, e.g., the average overlap is 0.05 for task correlated networks and is 0.036 for the 

anti-task networks. From these results, it is evident that the task-related and anti-task sub-networks 

inferred by our method are relatively spatial independent.   

 

Additionally, the anatomical distribution of the union of sub-networks (Fig.4c and Fig.5c) detected by our 

method is in agreement with the results in the previous work (Santhanam et al., 2009; Santhanam et al., 

2011). Task correlated networks are quite consistent with the activation detected in the previous study 

(Santhanam et al., 2009), including regions of bilateral parietal lobe, medial frontal gyrus, and bilateral 

middle frontal gyrus, which are also shown in Fig.4d. These regions have been shown to be related to 

arithmetic and working memory (Santhanam et al., 2009). Also, the anatomical distribution of the union 

of deactivation sub-networks by our methods, including the MPFC and the PCC, is akin to the previous 

report (Santhanam et al., 2011), as shown in Fig. 5d. In summary, our method is capable of detecting 

multiple meaningful task-related and anti-task sub-networks, the total of which are in agreement with the 

GLM-based group-wise activation. However, our method can provide much more details about the 

temporally and spatially different sub-networks. The interpretation of neuroscientific meanings of such 

variety of sub-networks entails more effort in the future.   

 

3.2 Diverse Dynamic Networks  

In addition to the sub-networks identified in Section 3.1, other sub-networks that include dominant 

number of voxels are also explored in this section. Through frequency analysis on these networks, we 

observed diverse network dynamics other than traditionally conceived activations and deactivations. 

Specifically, by thresholding all of the statistical coefficient maps (SCMs) in the control group using 

Z>1.65, we count the remaining voxel numbers in Fig.6a. The task correlated networks and anti-task 

networks are marked with red and blue respectively, from which we can see that some of them include 

dominant numbers of voxels while some of them do not. Apart from the red and blue marks, there are also 



certain networks that contain dominant numbers of voxels, e.g., # 27, #126 and #180. We picked up 6 

most dominant networks and visualized their spatial maps and temporal patterns in Figs.6b-6c. In Fig.6b, 

these networks are mainly located on the visual cortex, part of the default mode network and subcortical 

areas. The Pearson’s correlations with task design curve of these networks are relatively low, as shown in 

Table 5. By inspecting their time series patterns in Fig.6c, it is interesting that the network components of 

#27, #126, #180 and #256 exhibit high positive or negative impulses at the task change points. While 

#248 shows magnitude increase in letter-matching task and magnitude decrease in arithmetic task. Also, 

#328 is similar to anti-correlation pattern but it involves more uncertain fluctuations. The periodical 

reactions of all these networks exhibit high relevance to the task design curve, though they have quite 

diverse dynamics. This might be the reason that they are overlooked by the GLM based activation 

detection, and thus we call them diverse dynamic networks (DDN) in this paper. 

 

To further explore the diverse dynamic networks (DDNs), we applied the Fourier transform to the time 

series of the corresponding dictionary network atoms, as shown in Fig.7. For comparison, the power 

distributions of task correlated network #73 and anti-task network #82 are also shown in the top panels of 

Fig.7.  Since TR=3s and the period of a task cycle is 20 TRs, the task frequency is 1/(20×3s)=0.017 HZ. 

The power of task and anti-task networks are also concentrated on the task frequency of 0.017 HZ, as 

expected. But the diverse dynamic networks exhibited multiple frequencies.  As shown in Fig.7, the 

power of network #27, #126, #180 and #256 are mostly concentrated at doubled task frequencies (around 

0.034 HZ) or four times of task frequency (around 0.068 HZ). The network components #180 and #256 

even have peaks at six times of task frequency (around 0.100 HZ). The networks components #248 and 

#328 are concentrated on the task frequency, but low frequency energy at around 0.0085 HZ also 

contributes to the signal pattern of #248 and there are other frequencies in #328. These diverse dynamic 

networks provide evidence that there are multiple frequency responses in the human brain to tasks, and a 

certain brain region might exhibit multi-frequency responses. Also, these multi-frequency responses 

cannot be effectively detected by the traditional GLM-based method. These responses might occur at the 



brain areas that are not directly responsible for arithmetic or working memory but are believed to 

contribute to information input and attention regularization, such as the visual cortex, default model 

network or subcortical areas. In summary, the detection and characterization of these diverse dynamic 

networks demonstrated the advantage of our dictionary learning and sparse coding based framework. 

 

3.3 Effects of PAE 

As reported in the literature (Santhanam et al., 2009; Santhanam et al., 2011), the activation and 

deactivation regions tend to shrink with the increment of severity of PAE effect. We repeated the GLM 

based group-wise activation and deactivation detection with the FSL toolbox (Beckmann et al., 2003), 

and similar results are achieved, as shown in Fig.8 and Table 6. In this session, we will explore if the size 

of statistical coefficient maps (SCM) will be affected by the severity of PAE.  

 

First, we compare the voxel number histograms of all statistical coefficient maps from three groups of 

subjects including controls, exposed non-dysmorphic PAE (Non-Dys PAE) and exposed dysmorphic PAE 

(Dysmorphic PAE) in Fig.9a-9c based on the correspondence established by the common dictionary D. 

The same threshold of Z>1.65 is chosen for all networks from three groups. Globally, the voxel number 

distribution is quite similar across three groups, especially the marked dominant networks. Notably, the 

decreasing trend of voxel number can be observed with increment of severity of PAE, e.g., the task-

correlated network #73 includes around 2300 voxels in the control group, but it only includes around 

1500 voxels in the Non-Dys PAE group and only around 600 voxels in the Dysmorphic PAE group.  

 

After sorting the voxel number of each corresponding network in three groups, it can be found that the 

size of most of the networks decreases with the increment of severity of PAE. We visualize the 6 most 

dominant networks in Fig.10. Histogram of voxel numbers are shown in Fig.10a, and the decreasing trend 

is quite evident.  Also, the diminution is observable from the spatial maps in Fig.10b. Among these 6 

networks, #73 and #390 are categorized into task correlated networks, #354 is considered as an anti-task 



network, and #27, #126 and #180 are believed to be three diverse dynamic networks, as discussed in 

Section 3.2. The diminution of task-related networks include the left superior and right inferior parietal 

regions and the medial frontal gyrus, which is in agreement with the activation detection in our work and 

previous work in Santhanam et al., 2009. The diminution of anti-task network includes sub-cortical areas 

and MPFC, and this concurs with previous work as well (Santhanam et al., 2011). It is interesting that the 

diverse dynamic networks, including visual cortex and default mode network, also shrink with the more 

severity of PAE.  

 

Apart from the dominant networks shown in Fig.10, we can also find some other minor networks that 

include less numbers of voxels. The network sizes exhibit different patterns of relationship with the 

severity of PAE, as shown in Fig.11-12. In Fig.11a-11b, networks in the control group have the highest 

voxel sizes, while the Dysmorphic group has intermediate sizes and the Non-Dys group has the lowest.  

In contrast, for the networks in Fig.12a-12b, the Non-Dys group has the highest activation, the control 

group performs intermediately, and the Dysmorphic group has the lowest. Most of these networks are 

considered as anti-task networks, and it is evident that PAE effect might not be necessarily linear to 

certain brain networks. This effect needs more future interpretation, but it is inspiring that they can be 

captured by our group-wise sparse coding method.  

4 Reproducibility Analysis 

4.1 Simulation Experiment 

To validate the effectiveness of our method on multiple group analysis, we designed an experiment based 

on the fMRI simulation toolbox SimTB (http://mialab.mrn.org/software; Erhardt et al., 2012). 

Specifically, as shown in Fig.13 five components are simulated in two comparable groups (10 subjects in 

each). The spatial shapes of the components are shown in Fig.13a, and overlaps are designed between 

component 2 and 5, and between component 3 and 4. Block designed signals convolved by canonical 

HRF are visualized in Fig.13b. Inter-subject variability are simulated by 1~3 voxel (uniformly distributed) 

http://mialab.mrn.org/software


x-translation, 1~3 voxel (uniformly distributed) y-translation, and 1~5 degrees (uniformly distributed) 

rotation. Cross-group difference are realized by different component sizes, i.e., the sizes of components in 

the subjects of Group 1 is 1.3~1.5 times (uniformly distributed) larger than that of Group 2. Rician noise 

is added to each simulated subjects with the contrast-to-noise ratio of 1~3 (uniformly distributed). 

     With our proposed method, we learn the common signal pattern dictionary from the two groups of 

subjects. Since we already know the component number, we set the dictionary size as 5. As visualized in 

Fig.13c, the simulated signals of components are well reconstructed. The SCMs are calculated for each 

component of each group and are shown in Fig.13d and 13e. Since the simulation is based on very easy 

assumption, the significance of components could be high, so that we choose Z-threshold as 2.0.  We can 

see that, the spatial maps of components from both groups are reconstructed, especially the component 1 

with multiple regions. Also the components (2, 5, 3, 4) with overlaps are well recovered. Additionally, 

comparing Fig.13d and Fig.13e, the size difference of components between two groups are detected as 

designed, i.e., the SCMs of Group 1 are obviously larger than that of Group 2. Based on the simulation, 

we can conclude that our method is effective in reconstructing overlapped component networks from 

multiple groups, and is capable of capturing group-wise differences at the network level. 

 

4.2 Reproducibility with Different Dictionary Size 

Dictionary size is an important parameter of dictionary learning and sparse coding. In our paper we 

experimentally determine the dictionary size as 400. However, we also tried the dictionary size of 200, 

300 and 500. Based on our experiments, we found that by increasing the dictionary size, the detected 

networks might decrease in size. Firstly, that’s because the coefficients might be diluted by more 

dictionary atoms. And another reason is that it’s possible that one network will be decomposed into 

multiple component networks or similar networks. So in this paper, on the purpose of balancing 

dictionary size and network diversity we determine the dictionary size as 400. But as shown in Fig.14, 

with dictionary size set as 200, 300 and 500 the dominant task-related network, anti-task network and 

diverse dynamic network could always be detected. And the spatial patterns (Fig.14b) and temporal 



patterns (Fig.14c) are quite consistent across different dictionary sizes.  From Fig.14a, we also found that 

the group difference can also be consistently detected with different dictionary settings, i.e., the sizes of 

network #73 and #27 decrease with the increment of PAE severity and the size of network #82 follow the 

pattern of V(Control)>V(Dys PAE) )>V(Non-Dys PAE). In summary, we conclude that although the 

dictionary size might impact the network size and diversity, the representative networks could be 

consistently reproduced with different dictionary size setting. And the group differences could also be 

consistently captured by our method. In summary, our method is reliable and reproducible.  

 

5 Discussion and Conclusion 

5.1 Overview 

In this paper, we have presented a novel group-wise sparse representation and statistical coefficient 

mapping (SCM) approach for analyzing multiple populations with task fMRI data. The aggregated task 

fMRI signals from multi-groups of subjects are systematically represented as a learned common 

collection of signal basis and their spatial coefficient distribution maps. Temporal and frequency analysis 

on the dictionary basis elucidated the diversity of task evoked activity patterns. Statistical assessment of 

the spatial maps across subjects and inter-group comparison provide fine-granularity perspectives of 

detecting discriminations between brain conditions and normal controls. The approach has been applied 

on three groups of subjects which are affected by PAE in different degrees. Experimental results have 

suggested that our data-driven group-wise method can detect diverse task-related brain networks 

simultaneously, and these networks consistently exist across three groups but are affected in different 

ways with the increment of severity of PAE. 

 

5.2 Methodological Advantage 

The methodological advantages of our sparse coding and statistical coefficient mapping (SCM) are 

summarized as follows. First, the group-wise common dictionary bases are learned and optimized from 



the whole fMRI data, which consist of abundant response patterns. Thus, they are more adaptive to 

neurophysiology specification, more systematic in discovering diverse brain networks, and more 

sufficient in assessing rich information encoded in the whole fMRI data than the traditional GLM method. 

Second, the commonly learned dictionary can effectively leverage the commonness and discrimination 

across subjects and groups, which makes the SCM more robust to noise and more powerful in detecting 

cross-group differences, which is greatly preferred by systematic clinical assessment, such as PAE. Third, 

the sparsity constraint regularizes the regressor selection while learning coefficient, consequently the 

results from group non-zero T-test will be more strict. As a result, SCM maps are more reliable in 

measuring the significance of contribution. Finally, in comparison with previous sparse representation of 

fMRI signals of each individual brains for network analysis (Lee et al., 2011; Lv et al., 2014b), our group-

wise statistical method can automatically establish their correspondences across different populations and 

systematically assess the functional activity differences among these populations. Correspondence of 

individual component networks is established by learning the common dictionary basis from multiple 

groups and subjects, and the spatial normalization of individual brains and signal extraction guided by the 

common mask provides a foundation for statistical analysis and inter-group comparison.  

 

5.3 The Robustness of the Method 

Sparsity, which is a major feature of our method, take the responsibility of detecting statistically robust 

networks. In our method, the fMRI signal of each voxel from each subject was sparsely represented by 

the learned and optimized common signal basis. If one dictionary atom is not relevant to the certain signal, 

the corresponding coefficient will be penalized to zero. In other words, the sparse constraint regularizes 

the signal basis selection. Consequently, most elements of the coefficient matrix are zeros. Thus, the 

voxels survived from T-test in the SCMs have to be substantially and consistently non-zero. That’s the 

reason that most SCMs perform very low voxel number as shown in Fig.9. And it is exactly in this way, 

that the sparsity guaranteed the robustness of the networks. 



     The common dictionary learning from multiple groups of subjects make our method less sensitive to 

noises such as motions. Most of the noises are individually specified, but the dictionary is learned to 

represent common features across groups of subjects. Thus, either the noises would be dropped in the 

residuals of sparse representation or be learned as dictionary atoms if the dictionary is big enough.  

     Additionally, the learned activation signal patterns are more adaptive and flexible in the perspective of 

hemodynamic function as shown in Fig.4b. While in traditional GLM method, the hemodynamic function 

are usually pre-defined and uniformed for the whole brains of different subjects. And it’s evident that in 

Fig.4, different activated brain regions might perform different hemodynamic functions. Therefore, our 

method is also robust to hemodynamic variation. 

 

5.4 Improvement of Analysis 

Our proposed method was applied on the same data set of Santhanam et al. (2009). The major 

contribution of Santhanam et al. (2009) is the finding of diminution of activation and de-activation 

relevant to the severity of PAE. In comparison, our method not only detect this kind of diminution in 

activation/de-activation, but also refine the results in multiple activated or de-activated networks, which 

perform adaptive task-related signal patterns. In addition, we also found the diminution is present in 

multiple diverse networks, which have not yet been detected by traditional methods. However, in our 

work, we also captured that diminution is not the only pattern that applies to all networks. As shown in 

Fig.11 and Fig.12, different patterns could be found regarding the effect of PAE. 

 

5.5 Challenges and Future Work 

However, there are also challenges associated with this novel computational framework. First, there is 

little neuroscience evidence regarding how many component networks should be decomposed for the 

group of task fMRI signal sets so far. As a result, it is difficult to determine the learned dictionary size 

theoretically. Instead, our current results were based on experimentally determined network number. It 

will be one of our major future works to optimize the network number. Second, due to the lack of ground 



truth in fMRI, it is difficult to interpret the neuroscience meaning of all the learned hundreds of brain 

networks. Thus, more temporal, frequency and spatial characterization methods should be developed in 

the near future for better interpretation of our results. Finally, this novel framework should be applied in 

other task fMRI datasets of brain conditions and controls, in order to examine its reproducibility and 

robustness. It is believed that this framework would find many applications in clinical and cognitive 

neurosciences in the future.   
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Tables: 

 

Table 1. Pearson’s correlation and anti-correlation between time series of dominant networks and HRF 

convolved task design.      

Task 

Correlated 

Comp. ID # 73 149 185 308 312 390 Avg. 

Correlation 0.813 0.567 0.627 0.610 0.585 0.793 0.666 

 

Anti-Task Comp. ID # 82 94 274 326 331 354 Avg. 

Correlation -0.754 -0.690 -0.579 -0.747 -0.626 -0.556 -0.659 

 

Table 2.  (a). The Pearson’s correlations of top activated voxels from 8 subjects. As shown in the third 

row, the voxels exhibit the highest z-score in each subject. (b)  The Pearson’s anti-correlations of top 

deactivated voxels from 8 subjects. The voxels exhibit the lowest z-score in each subject. 



(a) 

Subject 1 2 3 4 5 6 7 8 Avg. 

Voxel (26,46,12) (32,22,2) (30,15,3) (45,35,23) (49,21,10) (41,34,24) (46,38,15) (48,20,9)  

Z-score 6.80 6.87 6.59 9.06 7.08 6.26 10.82 7.96 7.68 

Correlation 0.654 0.668 0.707 0.819 0.763 0.672 0.703 0.765 0.719 

 

(b) 

Subject 1 2 3 4 5 6 7 8 Avg. 

Voxel (30,55,10) (31,15,26) (33,44,11) (36,52,18) (43,31,19) (31,43,12) (31,27,32) (34,48,14)  

Z-score -6.56 -7.37 -6.08 -7.42 -9.03 -6.35 -7.73 -8.41 -7.37 

Correlation -0.369 -0.669 -0.390 -0.695 -0.728 -0.647 -0.697 -0.436 -0.579 

 

 

 

 

 

 

Table 3. The true positive rate (TPR) of task correlated network components, anti-task components and 

their union respectively in the group-wise activation and deactivation maps. 

Task CompID #73 #149 #185 #308 #312 #390 Union 

TPR 
0.745 0.209 0.393 0.132 0.091 0.434 0.926 

 

Anti-

Task 

CompID #82 #94 #274 #326 #331 #354 Union 

TPR 
0.376 0.068 0.133 0.214 0.049 0.632 0.817 

 

Table 4. (a) The spatial overlap ratio (OR) among the 6 task correlated networks. (b) The spatial overlap 

ratio (OR) among the 6 anti-task networks. 

(a) 

OR #73 #149 #185 #308 #312 #390 

#73 

1.000 0.032 0.161 0.030 0.088 0.107 



#149 

 1.000 0.025 0.017 0.014 0.054 

#185 

  1.000 0.021 0.060 0.088 

#308 

   1.000 0.008 0.023 

#312 

    1.000 0.018 

#390 

     1.000 

(b) 

OR #82 #94 #274 #326 #331 #354 

#82 

1.000 0.037 0.086 0.071 0.083 0.092 

#94 

 1.000 0.039 0.022 0.015 0.018 

#274 

  1.000 0.030 0.002 0.026 

#326 

   1.000 0.030 0.053 

#331 

    1.000 0.009 

#354 

     1.000 

 

Table 5. The Pearson’s correlations between the time series of diverse dynamic networks (DDN) and 

HRF-convolved task design curve.  

 

DDN 

Comp. ID # #27 #126 #180 #248 #256 #328 

Correlation 0.239 -0.031 0.170 -0.265 0.043 -0.411 

 

Table 6. Voxel numbers of group-wise activation regions and deactivation from GLM based method in 

three groups by using different levels of threshold. The activation using threshold Z>3.0 and deactivation 

using threshold Z<-3.0 are visualized in Fig.8. 

Activation Control Non-Dys PAE Dysmorphic PAE 

Z>2.5 4906 3096 3057 

Z>3.0 2630 1373 1276 



Z>3.5 1103 461 437 

Z>4.0 364 113 100 

    

Deactivation Control Non-Dys PAE Dysmorphic PAE 

Z<-2.5 6163 5955 2484 

Z<-3.0 3100 3098 787 

Z<-3.5 1315 1165 148 

Z<-4.0 487 241 18 

  

 

Figures: 

 

Fig.1. The computational framework of group-wise sparse representation of fMRI signals from three 

different groups of subjects. (a) FMRI signals from one single subject are extracted as a matrix 𝑆𝑥. A 

unified mask in the MNI space guides the signal extraction. (b) Signal matrices from three groups of 

subjects are aggregated into one big signal matrix S. GC: Healthy control, GN: Non-dysmorphic PAE, GD: 



Dysmorphic PAE. Here t indexes the fMRI time series points. (c) The learned signal dictionary matrix D 

and the corresponding coefficient matrix A are generated by applying the dictionary learning and sparse 

coding on the signal matrix. Note that the A matrix preserves the organization of subjects and groups in S. 

(d) Activity patterns can be selected from the D matrix, and coefficient matrix A can be statistically 

interpreted as group-wise spatial patterns. Afterwards, inter-group comparison is carried out. 

 

Fig.2. (a) A matrix is composed of three groups of subjects. (b) Correspondence of elements in 𝐴𝐺𝐶
 and 

group-wise null hypothesis T-test for each element. (c) The group-wise T-test results of acceptance of null 

(black dots) or rejection (white dots) (P<0.05). (d) Each row in (c), which represents a network 

component, is mapped back to the brain volume color-coded with z-scores. (e) and (f) are z-score maps 

derived from GN and GD with the same method of (b-d). 



 

Fig.3. The coefficient distribution of 7 example voxels in 16 subjects from the control group. The z-

scores of the five voxels are 0.5, 1.0, 1.5…… 3.5. For each example voxel, the black stars are coefficients 

from 16 subjects, and the red block indicates the mean value of the black stars divided by the standard 

deviation of the black stars.    



 

 

Fig.4. (a) The z-score map (Z>1.65) of the 6 networks exhibiting high correlation with task design (MNI 

space). (b) The corresponding signal patterns in D of the 6 network components.  (c) Group-wise union of 

the highly task-related networks. (d) Group-wise activation detected by the GLM method (Z>3.0, cluster-

correction).  



 

Fig.5. (a) The z-score map of the 6 networks (Z>1.65) performing high anti-correlation with task design 

(MNI space). (b) The corresponding signal patterns in D of the 6 network components.  (c) Group-wise 

union of the highly anti-task networks. (d) Group-wise de-activation detected by the GLM method (Z<-

3.0, cluster-correction).  



 

Fig.6. (a) Voxel number histogram of the 400 network components in the control group. Here, the highly 

task related networks in Fig.4 are marked with red color and the highly anti-task networks in Fig.5 are 

marked with blue color. Six dominant networks with high voxel numbers are marked with black. (b) The 

z-score map of the 6 networks (Z>1.65) marked with black color in (a). (c) The corresponding signal 

patterns in D of the 6 network components.   



 

Fig.7. The power distribution across frequencies of diverse dynamic networks in Fig.6c after applying 

Fourier transform.  



 

Fig.8. Comparison of activation maps (Z>3.0) and deactivation maps (Z<-3.0) from three groups of 

subjects by repeating GLM based group-wise activation and de-activation.  



 

Fig.9. Voxel number histogram of the 400 network components in the three groups of Control, Non-dys 

PAE and Dysmorphic PAE groups, respectively. (a) is the same as Fig.6a. 



 

Fig.10. Six networks whose voxel number is in decreasing order across three groups, i.e., 

V(Control)>V(Non-Dys PAE)>V(Dys PAE). (a) Voxel number (P<0.05, Z>1.65) comparison of the 6 

networks from three groups. (b) The z-score map comparison of 6 networks from three groups.  

 

 

 

 



 

Fig.11. Four networks whose voxel number is in the order of V(Control)>V(Dys PAE) )>V(Non-Dys 

PAE) across three groups. (a) Voxel number (P<0.05, Z>1.65) comparison of the 4 networks from three 

groups. (b) The z-score map comparison of 4 networks in (a) from three groups.  

 

 

Fig.12. Four networks whose voxel number is in the order of V(Non-Dys PAE)>V(Control)>V(Dys PAE) 

across three group. (a) Voxel number (P<0.05, Z>1.65) comparison of the 4 networks from three groups. 

(b) The z-score map comparison of 4 networks in (a) from three groups.  



 

 

Fig.13. Simulation experiment with simulation toolbox SimTB (http://mialab.mrn.org/software). (a) The 

spatial layout of the five simulated components. There are overlaps between C2 and C5, and between C3 

and C4. (b) The simulated signal patterns of the five components. Two comparable groups of subjects are 

simulated. The average component sizes of Group 2 is smaller than Group1. (c) The learned signal 

patterns of the five components from two groups using our method. (d) The spatial patterns of SCMs 

from Group 1. (e) The spatial patterns of SCMs from Group 2.  

http://mialab.mrn.org/software


 

Fig.14. Reproducibility experiment with different dictionary size. Block (I) (II) (III) represent three 

dominant networks detected by setting of dictionary size as 200, 300 and 500, respectively. #73 is a task-

related network, #82 is an anti-task network and #27 is a diverse dynamic network. (b) The voxel number 

of the networks in three groups. (b) The spatial maps of the three networks. (c) The signal pattern of the 

three networks. 


