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AbstractðFor decades, it has been largely unknown to what 

extent multiple functional networks spatially overlap/interact 

with each other and jointly realize the total cortical function. 

Here, by developing novel sparse representation of whole-brain 

fMRI signals and by using the recently publicly released 

large-scale Human Connectome Project (HCP) high-quality fMRI 

data, we show that a number of reproducible and robust 

functional networks, including both task-evoked and resting state 

networks, are simultaneously distributed in distant 

neuroanatomic areas and substantially spatially overlapping with 

each other, thus forming an initial collection of holistic atlases of 

functional networks and interactions (HAFNI). More 

interestingly, the HAFNIs revealed two distinct patterns of highly 

overlapped regions and highly-specialized regions and exhibited 

that these two patterns of areas are reciprocally localized, 

revealing a novel organizational principle of cortical function.  

 
Index Termsð Cortical architecture, fMRI, interaction, brain 

networks.    

I. INTRODUCTION 

nderstanding the organizational architecture of cortical 

function has been of intense interest since the inception of 

human neuroscience. After decades of active research using 

in-vivo functional neuroimaging techniques such as fMRI [1], 

there has been mounting evidence [2]-[6] that the brain function 

emerges from and is realized by the interaction of multiple 

concurrent neural processes or networks, each of which is 
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spatially distributed across specific structural substrate of 

neuroanatomical areas [7], [8]. However, it is still challenging 

to robustly and faithfully reconstruct concurrent functional 

networks from fMRI (either task fMRI (tfMRI) or resting state 

fMRI (rsfMRI)) data and quantitatively measure their 

network-level interactions. The critical lack of this key 

knowledge might be the underlying fundamental barrier to 

rigorously answering this long-standing debate in human 

neuroscience [9]: is the functional human brain architecture 

composed of a collection of highly specialized components, 

each responsible for a dedicated aspect of human function, or is 

the brain architecture more of a general-purpose machinery, 

each component of which involved in a wide range of 

functional processes?  

Despite the remarkable successes and significant 

neuroscientific insights on fMRI analysis achieved by 

traditional GLM based subtraction approach [10], [11], it has 

been recognized and pointed out in the literature that spatially 

overlapping networks subserving different functions are 

possible to go unnoticed by the blocked subtraction paradigms 

and the associated analysis methods such as general linear 

model (GLM) [12], [13]. Meanwhile, from a human 

neuroscience perspective, it has been widely reported and 

argued that a variety of cortical regions and networks exhibit 

strong functional diversity and heterogeneity [2], [5], [6], [9], 

[14], [15], that is, a cortical region could participate in multiple 

functional domains/processes and a functional network might 

recruit various heterogeneous neuroanatomic areas. Therefore, 

it is unlikely that current subtraction-based tfMRI data analysis 

methods are sufficient to reconstruct concurrent 

spatially-overlapping functional networks and then to address 

the fundamental question of whether the functional brain 

architecture is composed of highly-specialized components, or 

is a general-purpose machinery, or is somewhere in-between.         

Besides tfMRI for studying task-evoked cortical function, 

rsfMRI has arguably been another major neuroimaging 

technique to examine the intrinsic functional activities of the 

human brain [16]-[18]. Recently, a variety of computational 

methods, such as independent component analysis (ICA) [19], 

[20], normalized cut [21] or other clustering algorithms [22], 

have been employed to map resting state networks (RSNs) in 

healthy brains or neurological/psychiatric disorders, and many 

interesting results have been reported [17], [18], [23] [24]. 
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However, there has been limited knowledge about to what 

extent the reconstructed RSNs spatially overlap with each other 

and jointly realize resting state brain function. In addition, there 

has been increasing interest in examining the relationship or 

interaction between task-evoked networks and intrinsic RSNs 

in the literature [27].  

In order to address the abovementioned fundamental 

questions, in this work, we developed a novel computational 

framework of sparse representations of whole-brain fMRI 

signals and applied it on the recently publicly released 

large-scale Human Connectome Project (HCP) tfMRI data (Q1 

release) [28]. The basic idea of our computational framework is 

to aggregate all of hundreds of thousands of tfMRI or rsfMRI 

signals within the whole brain of one subject into a big data 

matrix, which is subsequently factorized into an over-complete 

dictionary basis matrix (represented by the panel (I) of Fig.1) 

and a reference weight matrix (represented by the panel (II) of 

Fig.1) via an effective online dictionary learning algorithm [29, 

30]. Then, the time series of each over-complete basis 

dictionary represents the functional BOLD 

(blood-oxygen-level dependent) activities of a brain network 

(the white curves in the panel (II) of Fig.1) and its 

corresponding reference weight vector stands for the spatial 

map of this brain network (the volume images in the panel (II) 

of Fig.1). A particularly important characteristic of this 

framework is that the decomposed reference weight matrix 

naturally reveals the spatial overlap/interaction patterns among 

reconstructed brain networks (illustrated in Supplemental 

Fig.1). Experimental results on the HCP datasets have shown 

that these well-characterized functional networks are 

reproducible across different tasks and individual brains and 

exhibit substantial spatial overlaps with each other 

(Supplemental Fig.1i-1o), thus forming an initial collection of 

holistic atlases of functional networks and interactions 

(HAFNI). More interestingly, these HAFNIs revealed two 

distinct patterns of highly heterogeneous (highly overlapped) 

regions and highly-specialized (task-evoked) regions in tfMRI 

data and showed that these two patterns of areas are 

reciprocally localized.            

II. MATERIALS AND METHODS 

A. Dataset and preprocessing 

The primary goals of the HCP tfMRI datasets were to identify 

as many core functional nodes in the brain as possible that can 

be correlated to structural and functional connectomes and 

behavior measurements [28]. To achieve this objective, a broad 

battery of tasks were adopted or designed to identify core node 

locations in as a wide range of neural systems as feasible within 

realistic time constraints. Thus the HCP tfMRI dataset can be 

considered as a systematic and comprehensive mapping of 

connectome-scale functional networks and core nodes over a 

large population in the literature so far. The specifics of seven 

tasks are briefed in supplemental materials. 

    In the first Q1 release of HCP fMRI dataset, 77 participants 

are scanned. Specifically, 58 are female and 19 are male, 3 are 

between the ages of 22ï25, 27 are between the ages of 26ï30, 

and 47 are between the ages of 31ï35. In the publicly released 

dataset, only 68 subjects are available. So our experiments are 

based on the 7 tasks and 1 resting state fMRI data of 68 

subjects. 

The acquisition parameters of tfMRI data are as follows:  

90×104 matrix, 220mm FOV, 72 slices, TR=0.72s, 

TE=33.1ms, flip angle = 52°, BW =2290 Hz/Px, in-plane FOV 

= 208 × 180 mm, 2.0 mm isotropic voxels [28]. For tfMRI 

images, the preprocessing pipelines included skull removal, 

motion correction, slice time correction, spatial smoothing, 

global drift removal (high-pass filtering). All of these steps are 

implemented by FSL FEAT. For results comparison, the 

GLM-based activation is also performed individually and 

group-wisely using FSL FEAT. Task designs are convoluted 

with the Double Gamma haemodynamic response function and 

set as regressors of GLM. The contrast based statistical 

parametric mapping was carried out with T-test and p<0.05 

(with cluster correction) is used to reject false positive. 

Multi -level z-scores are used to map multi-scale activations. In 

the group level, the statistical parametric mapping is carried out 

with mixed-effect model embedded in the FSL FEAT tool. For 

the rsfMRI data, the acquisition parameters were as follows: 

2×2×2 mm spatial resolution, 0.72 s temporal resolution and 

1200 time points. The pre-processing of rsfMRI data also 

include skull removal, motion correction, slice time correction, 

spatial smoothing. More detailed about rsfMRI data acquisition 

and preprocessing are referred to literature report [31]. 

B. Dictionary Learning and Sparse Coding 

The computational framework of dictionary learning and 

sparse coding of whole-brain fMRI signals is summarized in 

Supplemental Fig.10. Specifically, first, for each single 

subjectôs brain in one task scan, we extract tfMRI signals on all 

voxels of the whole brain. Then, after normalizing the signals to 

zero mean and standard deviation of 1, they are arranged into a 

big signal data matrix Xⱦᴙ   (Supplemental Fig.10a), where 

n columns are fMRI signals from n voxels and t is the fMRI 

volume number (or time points). By using a publicly available 

effective online dictionary learning and sparse coding method 

[30], each fMRI signal vector in X is modeled as a linear 

combination of atoms of a learned basis dictionary D 

(Supplemental Figs.10b-10c), i.e., ὼ Ὀ ‌and X=DĬŬ, 

where Ŭ is the coefficient weight matrix for sparse 

representation and each column ‌  is the corresponding 

coefficient vector for ὼ.  

At the same time, we map each row in the Ŭ matrix back to 

the brain volume and examine their spatial distribution patterns, 

through which functional network components are 

characterized on brain volumes, as shown by the red and yellow 

areas in Supplemental Fig.10c. At the conceptual level, the 

sparse representation framework in Supplemental Fig.10 can 

achieve both compact high-fidelity representation of the 

whole-brain fMRI signals (Supplemental Fig.10b) and 

effective extraction of meaningful patterns (Supplemental 

Fig.10c) [29], [30], [32]-[35]. In comparison with previous 

works of sparse representation of fMRI signals [36]-[39], the 

major novelty here is that our framework holistically considers 
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the whole-brain tfMRI signals by using a big-data strategy and 

aims to infer a comprehensive collection of functional networks 

concurrently, based on which their spatial and temporal 

characteristics can be quantitatively described and modeled.    

In this framework, we aim to learn a meaningful and 

over-complete dictionary of functional bases Ὀ‭ᴙ  (m>t, 

m<<n) [30] for the sparse representation of X. For the 

task-based fMRI signal set ὢ ὼȟὼȟȣὼ ‭ᴙ , the 

empirical cost function is summarized in Eq.(1) by considering 

the average loss of regression of n signals. 

ὪὈ ḯ
ρ

ὲ
ЉὼȟὈ  (1) 

With the aim of sparse representation using D, the loss 

function is defined in Eq.(2) with a Љ regularization that yields 

a sparse resolution of  ‌ , and here ɚ is a regularization 

parameter to trade-off the regression residual and sparsity level. 

ЉὼȟὈ ḯ άὭὲ
ᴙ

ρ

ς
ȿȿὼ Ὀ‌ȿȿ ‗ȿȿ‌ȿȿ (2) 

As we mainly focus on the fluctuation shapes of basis fMRI 

activities and aim to prevent D from arbitrarily large values, the 

columns ὨȟὨȟȣȣὨ  are constrained by Eq.(3). 

ὅḯ Ὀ‭ᴙ    ίȢὸȢ   Ὦ ρȟȣάȟ ὨὨ ρ (3) 

ÍÉÎ
ȟ ᴙ  

ρ

ς
ȿȿὢ Ὀ‌ȿȿ ‗ȿȿ‌ȿȿȟ  (4) 

In brief, the problem of dictionary learning can be rewritten 

as a matrix factorization problem in Eq.(4) [40], and we use the 

effective online dictionary learning method [30] to derive the 

atomic basis dictionary for sparse representation of whole-brain 

fMRI signals. Here, we employ the same assumption as 

previous studies [25], [36]-[39] that the components of each 

voxelôs fMRI signal are sparse and the neural integration of 

those components is linear.  

One common use of sparse representation of signals with 

limited number of atoms from a learned dictionary is to 

de-noise. For our application, with the sparse representation, 

the relevant basis components of fMRI activities will be 

selected and linearly combined to represent the original fMRI 

signals. With the same regularization in Eq.(4), we perform 

sparse coding of the signal matrix using the fixed dictionary 

matrix D in order to learn an optimized Ŭ matrix for spare 

representation as shown in Eq.(5).  

άὭὲ
ᴙ

ρ

ς
ȿȿὼ Ὀ‌ȿȿ ‗ȿȿ‌ȿȿ  

 

(5) 

Eventually, the fMRI signal matrix from a single subjectôs 

whole brain will be represented by a learned dictionary matrix 

and a sparse coefficient matrix (Supplemental Fig.10). Here, 

each column of the Ŭ matrix contains the sparse weights when 

interpreting each fMRI signal with the atomic basis signals in 

the dictionary. Meanwhile, each row of the Ŭ matrix represents 

the spatial volumetric distributions that have references to 

certain dictionary atoms. With these decomposed dictionary 

components and their weight coefficient parameters across the 

whole brain for each subject, our major task is to characterize 

and interpret them within a neuroscience context. In particular, 

the sparse representation and dictionary learning of 

whole-brain fMRI signals (Supplemental Fig.10) are performed 

for each individual brain separately and thus the spatial and 

temporal correspondences of those characterized dictionary 

components, or functional networks, across a group of subjects 

will be another major objective, as detailed in the next section. 

One major advantage of the sparse coding strategy is that the 

sparsity or scale of spatial regions in each component can be 

controlled and concentrated by the regularization of ɚ, but 

based on current knowledge in machine learning field there is 

no golden criteria about defining ɚ. So we empirically 

employed the sparsity of ɚ=1.5 based on the criterion of 

group-wise consistency of derived HAFNI components. Our 

experimental results show that based on the results in 

supplemental material Section I.B, the spatial maps and 

temporal patterns are not so sensitive to ɚ when it alternates in a 

certain level such as 1.0 to 2.0. Another critical parameter is the 

dictionary size. After exploring the dictionary size from 100 to 

600 in the supplemental materials, it is clear that the meaningful 

networks changes very slightly with alternation of dictionary 

size. Finally, the dictionary size in this paper is experimentally 

set as 400. 

C. HAFNI Networks Identification 

We have applied the above dictionary learning and sparse 

representation methods on the publicly available HCP release 

tfMRI datasets. Specifically, for each single individual, seven 

scans of task fMRI data and one scan of resting state fMRI data 

were acquired and preprocessed separately. The HAFNI 

pipeline was applied to each scan of each subject 

independently. So all analysis results in the following sections 

are based on the single scan of each subject. Then the following 

procedures of both quantitative measurements and visual 

examination of the spatial and temporal pattern of the obtained 

functional networks (dictionary atoms) were applied to identify 

networks that can be well-characterized and interpreted by 

existing brain science knowledge. Specifically, in tfMRI data, 

some of these networks have similar spatial and temporal 

patterns as the activation detection results (contrast maps) by 

using general linear model (GLM), as shown in Supplemental 

Figs.2a-2j (10 randomly selected subjects). As the time series 

of each basis dictionary is considered as a functional network 

component, we aim to characterize and model as many network 

components as possible (as already illustrated in Fig.1), and to 

seek their correspondences across individual brains. To achieve 

this goal, we not only compared each dictionary atomôs 

temporal shape pattern (white curve in image (III) of each panel 

in Fig.2a) with the task paradigm curve (red curve in image (III) 

of each panel in Fig.2a), each red curve for one separate task 

contrast), but also examined the similarity between the 

dictionary atomôs spatial reference weight map (image (I) in 

each panel in Fig.2a) and the activation map (image (II) in each 

panel in Fig.2a) obtained by traditional GLM method. 

Specifically, we defined the spatial overlap rate (Eq.(6)) to 
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measure the similarity of the two maps. Our rationale here is 

that each identified and characterized HAFNI component 

should exhibit both high temporal similarity with the task 

paradigm and high spatial similarity with the GLM-derived 

activation map. In addition, we evaluated the group-wise 

consistency of the dictionary atomôs spatial reference weight 

maps across all of the HCP subjects, as shown in Fig.2b as an 

example, and only those most group-wise consistent dictionary 

atoms are considered as HAFNI components. 

In this work, we aim to construct an initial set of functional 

atlases (called holistic atlases of functional networks and 

interactions (HAFNI)) characterizing consistent functional 

brain networks across HCP subjects in all seven tfMRI datasets. 

More specifically, in tfMRI data, for each single contrast map 

of an individual subject obtained by GLM, we first applied 7 

levels of z-score thresholds (1.0-4.0 stepped by 0.5) on it. Note 

that selecting multi-level of threshold is because there is no 

golden criterion for significance of activation detection, and we 

need to find a suitable match between the activation and the 

component network. Afterwards we picked up 10 candidate 

networks with higher spatial similarity with that contrast map 

of specific threshold and temporal correlation with task contrast 

design, as shown in our 

website:http://cobweb.cs.uga.edu/~hafni/HCPTask_ReportThr

esholded/HTML/. The spatial similarity is defined by the 

overlap rate R between spatial pattern of the network (A) and 

the spatial pattern of the contrast maps serving as the template 

(T): 

ὙὃȟὝ
ȿὃ᷊Ὕȿ

ȿὝȿ
 (6) 

A team of experts then quantitatively and qualitatively 

identified the best matches between HAFNI networks and 

GLM contrast maps. Seven experts were involved in the 

network identification. They searched network candidates 

separately, while the final results are based on the agreement 

reached by a voting procedure. For example, for the contrast 5 

of the motor task, the GLM spatial maps and HAFNI candidate 

components are shown in the link 

http://cobweb.cs.uga.edu/~hafni/HCPTask_ReportThresholde

d/HTML/Report_sub_11_MOTOR.html#MOTOR_cope_05. 

The group-wise GLM activation and individual activations 

with 7 level thresholds are shown in the first 3 rows. For each 

level of threshold, there are 10 candidate HAFNI components 

arranged in the same column. Note that each candidate is 

visualized with the spatial map and temporal curve overlaid 

with the contrast design. Our experts first selected an 

appropriate level of threshold for the GLM activation, and then 

the final HAFNI component was selected based on both the 

similarity with spatial activation map and the correlation of 

temporal curve and task design. Note that both spatial patterns 

and temporal time series shapes are taken into consideration as 

they provide complementary information regarding the 

neuroanatomic distributions and temporal dynamics of 

functional activities. Both sources of information can 

contribute to the identification and characterization of those 

brain networks. In this example, the GLM threshold is selected 

as 4.0 for reasonable patterns, and the HAFNI network of the 

subject corresponding to the contrast is selected as component 

#256 (out of 400 candidate ones) with both high spatial 

similarity with activation pattern and temporal correlation with 

contrast design. After summarizing the identification results 

from all 7 tasks across 68 subjects, there are totally 23 

consistent task-evoked functional networks identified, 

constituting the current initial version of HAFNI. The complete 

list of the final HAFNI networks vs. GLM contrast maps can be 

accessed on our website at: 

http://hafni.cs.uga.edu/finalizednetworks_Task.html.  

For resting state networks (RSNs) identification in seven 

tfMRI datasets and one rsfMRI dataset across all 68 HCP 

subjects, since the temporal characteristics of RSNs have not 

been fully understood or quantitatively described, we adopted 

the spatial similarity measurement defined in Eq.(6) to identify 

meaningful RSNs. In this work, we adopted the ten 

well-defined RSN templates provided in the literature [41]. For 

each tfMRI/rsfMRI data of each subject, we identified the 

component (dictionary atom) with the highest spatial similarity 

with each specific RSN template. Then a team of six experts 

quantitatively and qualitatively compared each identified 

componentôs spatial reference weight map with the 

corresponding RSN template in each task/resting state fMRI 

data of each subject. If the mean spatial similarity value of the 

identified component with the corresponding RSN template 

across all 68 subjects is less than 0.2 in any of the 

tfMRI /rsfMRI data, this RSN component will be discarded.  

For example, in the emotion task data of subject 1, the 

identified components with the corresponding RSN templates 

are shown in 

http://hafni.cs.uga.edu/HCPResting_Report/Report_Resting_S

tate_01.html#EMOTION. After quantitative and qualitative 

inspection by the experts, RSN #5 representing the cerebellum 

was discarded for all 68 subjects in the tfMRI/rsfMRI data. 

Finally, nine meaningful RSNs were successfully identified in 

all of the seven tfMRI datasets and one rsfMRI dataset of all 

subjects. Supplemental Figs.4a-4j show the nine identified 

RSNs via HAFNI in all seven tfMRI datasets and one rsfMRI 

dataset of 10 randomly selected subjects. The complete list of 

the final HAFNI RSNs are at: 

http://hafni.cs.uga.edu/finalizednetworks_Resting.html. 

We further examined the possible functional identities/roles 

of these HAFNI RSNs based on existing brain science 

knowledge and literature reports. Specifically, RSNs #1, #2 and 

#3 are all located in the visual cortex, and contain medial 

occipital pole (BA 17) and lateral visual areas (BAs 18/19), 

respectively. RSN #4, widely known as the ódefault mode 

networkô (DMN) [42] includes the medial prefrontal gyrus 

(BAs 9/10/11), anterior (BAs 12/32)/posterior (BA 29) 

cingulate cortex, and bilateral supramarginal gyrus (BA 39). 

RSN #5 mainly includes pre- and post-central gyrus (BAs 

1/2/3/4), and the supplementary motor area (SMA) (BA 6), and 

is known as the sensorimotor network. RSN #6 is known as the 

auditory network, including the Heschlôs gyrus, posterior 

insular cortex and lateral superior temporal gyrus. RSN #7 is 

considered as the executive control network, including anterior 

http://hafni.cs.uga.edu/finalizednetworks_Resting.html
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cingulate and paracingulate regions. Finally, RSNs #8 and #9 

have strong lateralization in the right (RSN #9) and left (RSN 

#10) hemispheres, containing the middle frontal and orbital 

(BAs 6/9/10) and superior parietal areas (BAs 7/40).  

Moreover, for comparison purpose, we performed 

independent component analysis (ICA) on the whole-brain 

rsfMRI data of each single HCP subject using FSL MELODIC 

tool [19] as an independent source to evaluate the identified 

HAFNI RSNs from tfMRI data. Specifically, we set 

ICA dimensionality as 100, which has been proven appropriate 

and effective in the literature. We adopted the same spatial 

overlap rate metric for identifying corresponding ICA 

components. The ICA component with the highest spatial 

overlap rate with a specific RSN template [41] was determined 

as the specific RSN in the rsfMRI data of a specific subject. 

It is essential to mention that our HAFNI framework is 

independent from the GLM-based fMRI activation detection 

and ICA-based resting state network identification. Without 

effective interpretation of the hundreds of networks generated 

by HAFNI, the GLM activation and ICA results are employed 

to identify meaningful networks in HAFNI. On the other hand, 

further comparison of spatial patterns and temporal 

characteristics across these methods is a reasonable verification 

of the effectiveness of our HAFNI method. 

D.  Spatial Overlap Patterns among Task-evoked and Resting 

State Functional Networks 

To quantitatively measure the overlap patterns, we adopted the 

following scheme to define the spatial overlap rate (OR): 

                 ὕὙ =                                          (7) 

In the above formula, i represents the number of overlap 

components in a specific situation and it is variable under 

different conditions (task contrast, HAFNI RSNs or their 

combination). For instance, in motor task, there are 5 contrasts 

with which we can identify the corresponding HAFNI 

components. We calculated the percentage of the voxels 

simultaneously recruited in i components to those voxels 

involved in at least one component. In this case, i changes from 

2 to 5. Similarly, in the calculation of OR in HAFNI RSNs, i 

changes from 2 to 9. It should be noted that when we estimate 

OR between task-evoked HAFNI components and HAFNI 

RSNs, 2 are the voxels belonging to both of them at the same 

time, and 2  represents the voxels involved at least one 

task contrast or one HAFNI RSN. 

The highly-heterogeneous region (HHR) region is defined by 

the number of networks/components involved within the 

region. Specifically, an HHR region is composed of a collection 

of voxels that: 

((2 ὺᶅέὼὩὰ ὺ ίȢὸȢᴁ‌ᴁ ὝὬὶὩίὬέὰὨ (8) 

Thus, any voxel on the cerebral cortex with the number of 

non-zero elements (i.e., the number of involved networks) in its 

corresponding column in coefficient matrix ᴁɻᴁ greater than 

a pre-defined threshold would be included in the HHR. As in 

this work the dictionary size was experimentally set as 400 

(please see the below section for more details), ᴁɻᴁ is in the 

range of 0 to 400. The threshold is defined by the number of 

non-zero elements in the top 20% percentile across all voxels, 

so that we would obtain similarly-sized HHR for different 

fMRI datasets. The rationale for using a single uniform 

threshold in defining the HHR is based on our observation that 

the values of ᴁɻᴁ  across voxels are typically normally 

distributed in all tfMRI datasets with similar mean and standard 

deviation (please see Supplemental Fig.5). We have examined 

the effect of threshold by performing the same analysis using 

different thresholds and have obtained similar conclusions 

(please see Supplemental Table VIII). Also, we define the 

highly-specialized regions (HSR) as voxels that are involved in 

task-related networks. 

III.  RESULTS 

A. Group-wise Consistent Task-evoked Functional Networks  

In total, we identified and confirmed 5, 3, 2, 2, 2, 3 and 6 

group-wise consistent task-evoked networks, or called HAFNI 

components here, for motor (M1-M5 in Fig.2a), emotion 

(E1-E3 in Fig.2a), gambling (G1-G2 in Fig.2a), language 

(L1-L2 in Fig.2a), relational (R1-R2 in Fig.2a), social (S1-S3 in 

Fig.2a), and working memory (WM) (W1-W6 in Fig.2a) 

networks, respectively. These networks are correlated to 

specific task performance, e.g., M1 is for right hand movement, 

M2 is for tongue movement, M3 is for global motion task, M4 

is for left hand movement, E1 is for emotional faces stimulus, 

E2 is for simple shape stimulus, W1 is for 2-back memory task, 

and W2 is for 0-back memory task. Additional details about the 

network description are referred to Supplemental Table XIII. In 

particular, these 23 HAFNI components are reproducible and 

consistent across all of the HCP subjects we examined, as 

shown in Supplemental Figs.2a-2j and in the visualizations on 

our website: 

http://hafni.cs.uga.edu/finalizednetworks_Task.html. In 

Figs.2b-2d and Supplemental Figs.3a-3g, the averaged spatial 

map of each HAFNI component across all subjects is shown 

and compared with the corresponding group-wise 

GLM-derived activation map. It is evident that the averaged 

HAFNI components are similar to the group-wise 

GLM-derived maps. Quantitatively, Supplemental Table I 

provides the spatial overlap rates of HAFNI components and 

GLM-derived activation maps for 20 randomly selected 

individuals, and the average of spatial overlap rate is 0.47.  In 

addition, Supplemental Table II shows the Pearsonôs 

correlations of the HAFNI componentôs temporal time series 

and the task paradigm curves for the same 20 subjects, and the 

average correlation is 0.39. These results demonstrated that the 

dictionary learning method and the HAFNI identification 

procedure can effectively uncover meaningful task-evoked 

functional networks, and can serve as a novel, alternative 

approach to detecting traditionally-conceived task-based 

activations. In Table I, the individual variation between HAFNI 

and GLM is substantial, the reason of which is attributed to the 

following two aspects. 1) The regression strategy in GLM that 

only employ limited regressors might not be sufficient in 

dealing with the diversity of hemodynamic behaviors and the 
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heterogeneous brain regions, so that the results from the GLM 

is fragile and is different from the HAFNI results. 2) The GLM 

method might not be capable of determining task related 

activations in the areas with complicated signals, while the 

HAFNI method can decompose task related components in 

these areas.  

Importantly, a fundamental difference between the HAFNIs 

and GLM-based activation maps is that the HAFNI 

components are simultaneously derived from the optimally 

de-composed fMRI signals based on the sparse representation 

of whole-brain data (as illustrated in Fig.1), while the 

GLM-based maps were obtained from individual fMRI signals 

based on separate model-driven subtraction procedures. For 

instance, the five HAFNI components (M1-M5 in Fig.2a) in the 

motor tfMRI data can be effectively and robustly derived by 

characterizing the most relevant atoms from a library of 

candidate dictionaries (the panel (I) of Fig.1), which can 

maximally account for the whole-brain fMRI signals. In 

contrast, the model-driven GLM procedure is applied on 

individual fMRI signals whose compositions could be 

contributed from multiple functional processes or networks. As 

a consequence, the GLM has difficulty in reconstructing 

concurrent, interacting functional networks, and thus other 

spatially overlapping networks with different temporal curves 

(such as the RSNs in the panel (II) of Fig.1) other than the task 

paradigm will be essentially unnoticed [12] [13]. Also, the 

experimental comparison between HAFNI method and GLM 

method based on synthesized data in Supplemental Methods. C 

(Performance on Synthetic Data) provides additional sound 

evidence that the HAFNI method performs better in 

reconstructing concurrent interacting function networks. In the 

synthetic experiments, the HAFNI method exhibits clear 

advantages in reconstructing temporal response of networks 

and is superior in the sensitivity, precision and false discovery 

rate of reconstructed spatial maps of concurrent brain networks. 

Therefore, it is appropriate and feasible to employ the HAFNI 

components, instead of the GLM-derived maps, to explore the 

question of how the total cortical function is realized by the 

interaction of multiple concurrent neural processes or networks 

[2]-[8].  

B. Group-wise Consistent Resting-state Functional Networks 

We went through all of the decomposed dictionary 

components (e.g., the panel (I) of Fig.1) and identified nine 

reproducible and consistent RSNs in all of the seven tfMRI 

datasets across all of the HCP subjects. Fig.3a shows the nine 

RSNs (nine rows) in these seven tasks (the first seven columns) 

for one exemplar subject. Meanwhile, for comparison purpose, 

the corresponding RSNs identified by both of the dictionary 

learning method and the independent component analysis 

(ICA) [19] method from rsfMRI data are shown in the eighth 

and ninth columns in Fig.3a. It is evident that all of the nine 

RSNs derived from either tfMRI or rsfMRI data are consistent 

with the template [41], and thus are called HAFNI RSNs here. 

Particularly, the nine HAFNI RSNs can be robustly 

reconstructed across individuals, as shown in Fig.3c, in 

Supplemental Figs.4a-4j, and on our website: 

http://hafni.cs.uga.edu/finalizednetworks_Resting.html. In 

addition, the averaged HAFNI RSNs maps across all HCP 

subjects are shown in Fig.3b, and quantitatively the mean 

spatial overlap rate of nine HAFNI RSNs is as high as 0.59, as 

detailed in Supplemental Table III. Supplemental Table IV 

shows the spatial overlap rates of nine HAFNI RSNs across all 

HCP subjects. These results demonstrated that no matter what 

the task is, the nine RSNs can be robustly reconstructed and 

reproduced by the sparse representation and HAFNI 

identification method. Thus, the identification of these HAFNI 

RSNs lays out a solid foundation to explore the question of to 

what extent the RSNs spatially overlap and interact with 

task-evoked functional networks obtained in the above section.      

For comparison purpose, Fig.3a (the ninth column) shows 

the identified RSNs via ICA in the rsfMRI data of the same 

subject. Supplemental Table V details the mean overlap rates of 

nine HAFNI RSNs in rsfMRI data and those by ICA across all 

subjects. The mean overlap rate is 0.56±0.07 for HAFNI RSNs, 

and is 0.55±0.09 for ICA. Both qualitative (Fig.3a and 

Supplemental Figs.4a-4j) and quantitative (Supplemental Table 

V) results indicate that the HAFNI method can consistently and 

reliably identify RSNs in rsfMRI data too, compared with the 

widely-used ICA method. However, a critical difference 

between the dictionary learning/sparse representation method 

and the ICA method is that ICA explicitly assumes the 

independence of fMRI signals among different components, 

while the sparse representation does not. Essentially, multiple 

functional processes or network components (illustrated in 

Supplemental Fig.1) could be spatially overlapping and 

interacting with each other in resting state or under task 

performance [2], [5], [6], [9], [14], [15], and it has been pointed 

out in the literature that fMRI signals are not necessarily 

independent [25], [26]. Therefore, it is more appropriate and 

feasible to employ the HAFNI RSNs, instead of the 

ICA-derived components, to explore the question of how the 

total cortical function is realized by the interaction of multiple 

concurrent neural processes or networks [2]-[8]. In this work, 

the 9 HAFNI RSNs and other 23 task-evoked HAFNI 

components (in the above section) are simultaneously derived 

from the same procedure of matrix factorization of whole-brain 

fMRI signals (Fig.1), which naturally represents the spatial 

overlap and functional interaction patterns among the initial 

collection of holistic brain networks and provides an enabling 

platform to explore functional cortical architectures.   

C. Spatial Overlap Patterns among HAFNI Components 

Based on the above task-evoked HAFNIs and HAFNI RSNs, 

we examined their spatial overlaps with each other, including 

overlaps among multiple contrast-evoked HAFNIss within the 

same task and overlaps between task-evoked HAFNIs and 

HAFNI RSNs. Specifically, Fig.4a visualized the overlap 

patterns in all seven tasks for one randomly selected subject. 

From Fig.4a, we can clearly see the substantial overlaps not 

only among different contrast-evoked components but also 

between task-evoked HAFNIs and HAFNI RSNs. For example, 

for the motor task (the first column of Fig.4a), there exist 

multiple regions that are simultaneously recruited by multiple 
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task contrasts and motor/auditory RSNs. In addition, the extent 

of spatial overlaps is quantitatively measured by the number of 

HAFNI components that each brain region is involved in and is 

color-coded in Fig.4b. The widespread red regions in Fig.4b 

depict those highly overlapped cortical areas, revealing the 

functional interaction patterns of the well-characterized HAFNI 

components in seven tasks.   

Quantitatively, the overall spatial overlap rate (OR) (defined 

in Eq.(7)) result is summarized in Supplemental Table VI, 

which is interpreted as follows. First, spatial overlap 

between/among different contrast-evoked components is quite 

common and widespread. For instance, the average spatial 

overlap rate for two contrast-evoked components in motor, 

emotion, gambling, relational, social and working memory 

tasks are 20.6%, 17.7%, 23.3%, 29.4%, 25.3%, and 20.6%, 

respectively. These results demonstrated that contrast-evoked 

network components within the same task are substantially 

overlapped in the spatial domain, suggesting their functional 

interactions. Notably, the ORs among different contrasts have 

considerable variation across seven tasks. For example, the 

ORs for language and relational tasks are of 0.8% and 29.4%, 

respectively. For comparison, we have also calculated the 

overlap rate between the activation detection 

(activated-baseline) results obtained by the general linear 

model (GLM) in each task, which are summarized in 

Supplemental Table XII. As shown in the table, the overlap rate 

between the activation detection results from GLM follows the 

same trend as in the contrast-evoked components from HAFNI, 

yet with a substantially lower value. The explanation for the 

higher spatial overlapping rate of HAFNI results is the fact that 

the data-driven, automatically identified components obtained 

by HAFNI are able to include regions with more complicated 

functional characteristics, while those regions would more 

frequently serve for the functional interaction thus tend to be 

recruited in multiple contrasts. 

Second, spatial overlap between/among different HAFNI 

RSNs is also quite common and widespread, as shown in Fig.4 

and Supplemental Table VI. Notably, compared to task 

contrasts, HAFNI RSNs have relatively more consistent 

overlap patterns. As shown in Supplemental Table VI, the ORs 

of two HAFNI RSNs in seven tasks range from 9.3% to 15.4%, 

and the ORs of three HAFNI RSNs range from 0.7% to 2.2%. 

The spatial distributions of these overlaps in one subject are 

visualized on the cortical surface in the second rows of Fig.4a 

and Fig.4b. It is interesting that these RSNs overlap patterns are 

reasonably stable and reproducible across a variety of tasks, 

suggesting the reliability of RSNs-related organizational 

architecture of the human brain.     

Third, there are considerable spatial overlaps between 

task-evoked HAFNIs and HAFNI RSNs, as shown in the third 

rows of Figs.4a-4b and Supplemental Table VI. The average 

OR between task contrast-evoked components and HAFNI 

RSNs is 9.7%, and in particular, this OR value in working 

memory even reaches 20.0%. More quantitative details for each 

task are in the last row of Supplemental Table VI. In general, 

these results quantitatively demonstrated an interesting 

phenomenon: RSNs exhibited substantial spatial 

overlaps/interactions with task-evoked networks during task 

performance.  

D. Reciprocal Localization of Highly-Heterogeneous Region 

and Highly-specialized Regions     

The previous sections have revealed the common and 

widespread spatial overlaps among 32 well-characterized 

HAFNI components. In this section, we aim to investigate other 

un-characterized network components and their composition 

patterns over the cerebral cortex. Our extensive observations of 

such network composition patterns suggest that there are two 

distinct patterns for cortical regions, one is involved in multiple 

functional networks and is thus named ñhighly-heterogeneous 

region (HHR)ò, and another is mainly responding to the task 

and therefore is named ñhighly-specialized regions (HSR)ò. A 

visual illustration of the HHR along with HSR obtained by 

GLM-based activation detection is shown in Fig.5. It can be 

seen that HHR regions (red) are spatially distributed around the 

whole cortex, with very small overlaps with the HSR regions 

(blue). Such observation is quite consistent throughout all of 

the seven tasks and across all subjects, as shown in the 

additional cases in Supplemental Figs.6-7. Quantitatively, the 

overlap rates between the HHR and HSR regions of 20 

randomly selected subjects are summarized in Supplemental 

Table VII. It is evident that the overlap rates are quite small 

(mostly <5%). In addition, the difference between HHRs and 

HSRs can be revealed by their temporal characteristics. For 

instance, while the mean tfMRI time series across all the voxels 

of the HSR region (Fig.5d1) is highly correlated with the task 

paradigm, as expected, the mean tfMRI time series of HHR 

region (Fig.5f1) is much more complex. Moreover, we have 

examined the component histogram of the HSR region and the 

HHR region by summing up the number of non-zero elements 

of each component in each voxel within the given region, and 

then normalized them to the sum of 1. The histograms of the 

HSR region and HHR region of a randomly selected subject 

during motor task are shown in Fig.5c and Fig.5e. It can be seen 

that the component histogram of HSR region is highly 

concentrated on certain components. Interestingly, the top two 

components in the histogram are exactly the components that 

had been identified as task-evoked HAFNI networks (M1 and 

M3), indicating the component-wise correspondence between 

GLM activation detections and HAFNI results.  

On the contrary, the component histogram of HHR is more 

evenly-distributed and composed of various types of 

components. In particular, there are RSNs highly involved in 

the HHR, including RSN 3 and RSN 7 (highlighted in the 

figure), with RSN 7 being among the highest active networks in 

the region. As expected, task-evoked HAFNI components like 

M1 and M3 also have a relatively high percentage in the 

histogram, showing that certain parts of HHR participate in 

those tasks as well. In addition, such heterogeneities in the 

component histograms in HHRs are confirmed and illustrated 

at the individual voxel level in Supplemental Fig.8, which 

shows much more complexity and heterogeneity in the 

component composition of the voxels in HHR than those in the 

voxels of HSR. Further, we have investigated the overlap of the 
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activation detection results obtained by GLM across multiple 

tasks, by obtaining the intersections of the contrast maps 

(task-baseline). It was found that there exist certain regions in 

the brain that would be involved in the contrast maps from 

different tasks using GLM. A spatial comparison of those 

cross-task GLM result regions with the frequent-HSR shows 

that they are largely in accordance (average similarity of 65%), 

which is reasonable as HSR is mainly composed of the 

task-evoked HAFNI networks as shown in the analysis above. 

 Therefore, due to the complex network composition, those 

HHR regions could not be identified solely by their temporal 

time series pattern and could only be characterized by their 

network compositions like Fig.5e. Quantitatively, we used the 

histogram entropy to quantify the difference in the complexity 

of the component histogram between HSR and HHR. The 

results shows that there is a significant difference between 

those two regions regarding the histogram entropy (p<0.01), 

and the detailed quantifications are shown in Supplemental 

Table IX. In addition, we have defined the histogram 

concentration as: 

#ÏÎÃÅÎÔÒÁÔÉÏÎὌ В ÍÁØ Ὄ      (9) 

which is the summed percentage of the top 5 components in 

the histogram. A higher summed percentage value indicates 

that the distribution of the histogram is more concentrated on 

several dominant components. The concentration values of 20 

randomly selected subjects are shown in Supplemental Table 

VII . Again, there is a significant difference between HSR and 

HHR (p<0.01), quantitatively verifying the histogram 

difference between HSR and HHR observed in Fig.5. The 

above results demonstrated that HHRs and HSRs are 

reciprocally located on the cerebral cortex within a specific 

cognitive or functional task. 

Moreover, we examined frequent HHRs (F-HHR) and 

frequent HSRs (F-HSR) across all of the 7 tasks for each 

individual brain. Specifically, if an HHR or HSR region 

appears at least 4 times across 7 tasks (any possible 

combination from 7 tasks), it is considered as an F-HHR or 

F-HSR. Thus, to some extent, an F-HHR region can be 

considered as the multiple-demand (MD) area of the brain [2], 

[4], while an F-HSR region can be considered as a 

demand-specific (DS) area [2]. It is interesting that those two 

types of F-HHR and F-HSR areas are also reciprocally 

distributed and widespread across the cerebral cortex, as shown 

in Fig.6 and Supplemental Fig.9. In short, our results suggest 

that the functional cortical architecture is composed of a 

reciprocal combination of frequent highly-specialized regions 

and frequent highly-heterogeneous region across different 

types of cognitive or functional tasks. 

IV.  DISCUSSION AND CONCLUSION 

In this work, we decomposed fMRI signals into linear 

combinations of multiple components based on sparse 

representation of whole-brain fMRI signals. This novel 

data-driven strategy naturally accounts for that a brain region 

might be involved in multiple functional processes [2], [5], [6], 

[9], [14], [15] and thus its fMRI signal is composed of various 

components. Experimental results have demonstrated that this 

novel strategy can effectively and robustly reconstruct 

concurrent functional networks, including both task-evoked 

HAFNIs and HAFNI RSNs, which can be reproduced across 

individuals. However, despite that we have characterized and 

interpreted 32 HAFNI components in spatial and/or temporal 

domains, there are still many other components remaining to be 

characterized and interpreted. These networks could be 

unknown networks or just noise networks, which need effective 

methodology to explore in the future. The 32 HAFNI 

components reported here is just a start point towards holistic 

atlases of functional networks in the future. Notably, the 

identification of HAFNI components heavily relied on expertsô 

visual inspection in this work. In the future, novel methods 

should be developed to automatically identify consistent and 

reproducible HAFNI components across individuals and 

populations, as well as characterizing artefacts components.      

GLM-based activation detection and ICA-based clustering 

have been arguably the dominant methods in tfMRI and rsfMRI 

data analyses, respectively. In this work, an alternative novel 

sparse representation and dictionary learning methodology is 

proposed to effectively infer the spatial overlap/interaction 

patterns among those brain networks. Experimental results 

have revealed the common and widespread spatial overlaps 

within and among both task-evoked and resting state networks, 

and particularly discovered the reciprocal localization of HHRs 

and HSRs. In the future, the regularity and variability of such 

reciprocal localization patterns of HHRs and HSRs should be 

examined across individual brains and be correlated with 

structural neuroimaging data. In addition, extensive 

quantitative studies should be performed to compare the sparse 

representation method with the GLM and ICA methods [19], 

[24] in mapping concurrent networks and spatial overlaps in the 

future.            

In summary, our work has inferred and characterized 32 

reproducible and meaningful functional networks and their 

spatial overlap patterns for each subject in the HCP data, 

forming an initial version of holistic atlases of functional 

networks and interactions (HAFNI). These HAFNIs revealed a 

new and reproducible functional architecture principle of the 

human cortex, that is, reciprocal localizations of HHRs and 

HSRs. In the future, it will be invaluable to further assess 

possible alterations of HAFNI components and interactions in 

brain disorders such as Alzheimerôs disease and Schizophrenia.  
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(a) 

 

(b) 

Fig. 1.  The decomposed dictionary components of the motor task fMRI data of 

one single task  (I) and the corresponding reference weight maps (14 maps 

shown in (II)) by applying the HAFNI method to the whole-brain fMRI signals. 
Figures (a) and (b) visualize 14 selected dictionary components which are 

either motor task-evoked networks (M1-M5) or resting state networks 

(RSN1-RSN9), respectively. The green bars in (I) show 400 dictionary network 
components (indexed vertically) and the spatial non-zero voxel numbers that 

each componentôs reference weight map contains (represented by the 

horizontal height). The panels in (II) visualize the temporal time series (white 
curve) and spatial distribution map (eight representative volume images) of 

each network. The red curves represent the task contrast designs of the motor 

tfMRI data. 
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(d) 

Fig. 2.  The task-evoked HAFNI components in seven tfMRI datasets and the 

comparison with GLM-derived activation maps. Seven tasks are language 
network (L), motor network (M), gambling network (G), emotion network (E), 

social network (S), relational network (R) and working memory network (WM). 

(a) Examples of 23 task-evoked HAFNI components in seven tasks in one 
subject. Each panel includes one HAFNI component and has three sub-figures 

(I-III). (I) One representative slice from a HAFNI componentôs spatial 

reference weight map. (II) The corresponding representative slice of the 
activation map by GLM. (III) The comparison of task paradigm curve and the 

HAFNI componentôs temporal time series. (b) Examples of group-wise 

consistency of the HAFNI componentôs spatial reference weight maps across 
different HCP subjects (10 subjects shown here). Two HAFNI components in 

the motor task are shown. The last two columns are the group-wise averages of 

HAFNI components and the group-wise GLM activation maps. (c) Group-wise 
averages of 12 identified HAFNI components across 68 HCP subjects for the 

four tasks as well as the corresponding averaged GLM-derived activation maps 

(right column). Six representative volume slices were selected for visualization 
for each component. (d) Group-wise averages of 11 other identified HAFNI 

components across HCP subjects for the three tasks, as well as the 

corresponding averaged GLM-derived activation maps (right column). 
Similarly, six representative volume slices were selected for visualization for 

each component. 

 

 

(a) 

 
(b) 

 
(c) 

Fig. 3.  The nine HAFNI RSNs identified from seven tfMRI datasets and one 

rsfMRI dataset and their comparisons with corresponding ICA-derived 

components. (a) Examples of 9 HAFNI RSNs (nine rows) in seven tfMRI 
datasets (the first seven columns) in one subject. The eighth column shows the 


