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AbstracH For decades, it has been largely unknown to what
extent multiple functional networks spatially overlap/interact
with each other and jointly realize the total cortical functian.
Here, by developing novel sparse representation of whel&ain
fMRI signals and by using the recently publicly released
large-scale Human Connectome Project (HCP) higiquality fMRI
data, we show that a number of reproducible and robust
functional networks, including both taskevoked and resting state
networks, are simultaneously distributed in distant
neuroanatomic areas and substantially spatially overlapping with
each other, thus forming an initial collection of holistic atlases of
functional networks and interactions (HAFNI). More
interestingly, the HAFNIs revealed two distinct patterns of highly
overlapped regions and highlyspecialized regions and exhibited
that these two patterns of areas are reciprocally localized,
revealing a novel organizationalprinciple of cortical function.

Index Term® Cortical architecture, fMRI, interaction, brain
networks.

|I. INTRODUCTION

spatially distributed across specific structural substrate of
neuroanatomical are§g], [8]. However, it is stilichallenging

to robustly and faithfully reconstruct concurrent functional
networks from fMRI (either task fMRI (tftMRI) or resting state
fMRI (rsfMRI)) data and quantitatively measure their
networklevel interactions.The critical lack of this key
knowledge might be the underlying fundamental barrier to
rigorously answering this lorgtanding debate in human
neurosciencd9]: is the functional human brain architecture
composed of a collection of highly specialized components,
each responsible for a dedicatespect of human function, or is
the brain architecture more of a gengratpose machinery,
each component of which involved in a wide range of
functional processes?

Despite the remarkable successes and significant
neuroscientific insightson fMRI analyss achieved by
traditional GLM basedubtraction approacii0], [11], it has
been recognized and pointed out in the literature that spatially
overlapping networks subserving different functions are
possibleto go unnoticed by the blocked subtraction payact

Undergtanding the organizational architecture of corticglyg the associated analysis methods such as general linear
function has been of intense interest since the inception gf,qe| (GLM) [12], [13]. Meanwhile, from a human
human neurosciee. After decades of active research usinge roscience perspective, it has been widely reported and

in-vivo functional neuroimaging techniques such as f¥IR)

argued that a variety of cortical regions and networks exhibit

there has been mounting evide{@[6] that the brain function gyrong functional diveity and heterogeneitf2], [5], [6], [],
emerges from and is realized by the interaction of multipig 41 [15], that is, a cortical region could participate in multiple
concurrent neural processes or networks, each of whichig tional domains/processes and a functional network might
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it is unlikely that curent subtractiosbased tfMRI data analysis
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Cortical Architecture Imaging and Discovery Lab, Department of Computepatially-overlapping functional networks and then to address

Science and Bioimaging Research Center, The University of Georgia, Athe

GA, 30602 USA(e-mail: Ivjinglei@gmail.com; shijiezhao666@gmail.com
zhangtuo.npu@gmadont).
X. Jiang*, X. Li*, D. Zhu*, S. Zhang, H. Chen are with ti@ortical

tHe fundamental question of whether the functional brain
architecture is composed of higkdpecializel components, or
is a generapurpose machinery, or is somewherdatween.

Architecture Imaging and Discovery Lab, Department of Computer Science Besides ttMRI for studying tastevoked cortical function

and Bioimaging Research Center, The University of Georgia, Athens, G

30602 USA (email: superjx2318@gmail.com xiangli@uga.edu ;
dajiang.zhu@gmail.coyshuzhang1989@gmail.cooojoc.chen@gmail.com

A

rsfMRI has arguably been another major neuroimaging
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have been employed to map resting state networks (RSNSs) in
healthy brans or neurological/psychiatric disorders, and many
interesting results have been reporféd], [18], [23] [24].



However, there has been limited knowledgieout to what and 47 are between the ages af 3. In thepublicly released
extent the reconstructed RSNs spatially overlap with each otltatasetonly 68 subjects are available. So experimers are
and jointly realize rgting state brain functioin addition, there based on the 7 tasks and 1 resting state fMRI data of 68
has been increasing interest in examining the relationship subjects
interaction between taskvoked networks and intrinsic RSNs The acqusition parameters of tftMRI data are as follows:
in the literaturd27]. 90%x104 matrix, 220mm FOV, 72 slices, TR=0.72s,
In order to address the abovementioned fundamenfBE=33.1ms, flip angle = 52°, BW =2290 Hz/Px;plane FOV
qguestionsjn this work, we developed a novel computationat 208 x 180 mm, 2.0 mm isotropic voxels§R For tfMRI
framework of sparse representations of wHmlgin fMRI images, the preprocessing pipelines includ&dll removal,
signals and applied it on the recently publicly releasemhotion correction,slice time correctionspatial smoothing,
largescale Human Connectome Project (HCP) ttMRI data (Qdlobal drift removalhigh-pass filtering) All of these steps are
release]28]. The basic idea of owomputational framework is implemented by FSL FEATFor results comparison, the
to aggregate all of hundreds of thousands of tfMRI or rsfMRELM-based activation is also performed individually and
signals within the whole brain of one subject into a big da@roup-wisely using FSL FEATTask designs are convoluted
matrix, which is subsequently factorized into an ex@mplete with theDouble Gamma haemodynamic response function and
dictionary basis matrix (represented be thanel (1) of Fig.1) set as regressors of GLMIhe contrast based statistical
and a reference weight matrix (represented by the panel (Il) mdrametric mapping was carried out withtebt and p<0.05
Fig.1) via an effective online dictionary learning algoritf#28, (with cluster correction)is used to reject false positive.
30]. Then, the time series of each oceemplete basis Multi-level zscores are used to map mudtiale activationdn
dictionary represents the functional BOLDthe group level, the statistical parametric mapping is carried out
(blood-oxygenlevel dependent) activities of a brain networkwith mixed-effect model embedded in the FSL FEAT tdebr
(the white curves in the panel (Il) of Fig.1) and itghe rsfMRI datathe acquisition pameters were as follows:
corresponding reference weight vector standstlie spatial 2x2x2 mm spatial resolution, 0.72 s temporal resolution and
map of this brain network (the volume images in the panel (ID200 time points.The preprocessing of rsfMRI data also
of Fig.1). A particularly important characteristic of thisincludeskull removal, motion correctioslice timecorrection,
framework is that the decomposed reference weight matgpatial smoothingMore detailecabout rsfMRIdata acquisition
naturally reveals the spatial overlap/interaction patterns gmoand preprocessing are referred to literature rdBait
reconstructed brain networks (illustrated Bupplemental B. Dictionary Learning and Sparse Coding

Fig.1). Experimental results on the HCP datasets have shown . o .
that these weltharacterized functional networks are 1he computational framework of dictionary learning and

reproducible across different tasks and individual brains af#arsé coding of wholerain fMRI signals issummarized in
exhibit substantial spatial overlaps with each otherSupplemental Fig.10 Specifically, first, for each single

(Supplemental Fig.110), thus forming an initial collection of SUbJj €ct 6s brain in one task sc

holistic atlases of functional networks and interaction¥0Xels of the whole brain. Then, after normalizing the signals to
(HAFNI). More interestingly, these HAFNIs revealed twoZ€r0 mean and standard deviation of 1, they are arranged into a
distinct patterns of highly heterogeneous (highverlapped) Pig signal data mawiXfa  (Supplemental Fig. 1), where
regions and highkspecialized (taskvoked) regions in tiMR| N columns are fMRI signals from n voxels ant the fMRI

data and showed that these two patterns of areas ¥plume number (or time points). By using a publicly available

reciprocally localized. effective online dictionary learning and sparse coding method
[30], each fMRI signal vectorni X is modeled as a linear
II. MATERIALS AND METHODS combination of atoms of a learned basis dictionddy
) (Supplemental Figs.16b0c), i.e.,®@ O | and X=DI U
A. Datasetand preprocessing where U is the coefficient weight matrix for sparse

The primary goals of the HCP tfMRlatasets were to identify representation and each column is the corresponding
as many core functional nodes in the brain as possible that ¢gffficient vector forcy.
be correlated to structural and functional connectomes andat the same time, we map each row in hmatrix back to

behavior measuremeris8]. To achieve this objective, a broadthe prain volume and examine their spatial distribution patterns,
battery of tasks were adopted or desigmedentify core node through  which functional network components are
locations in as a wide range of neural systems as feasible witBixracterized on brain volumes, as shown by the red #ngvye
realistic time constraints. Thus the HCP tfMRI dataset can RBgegas in Supplemental FigdlOAt the conceptual level, the
considered as a systematic and comprehensive mappingsgrse representatidramework in Supplemental Fig.1€an
connectomescale functional networks and core nodeer a schieve both compact higfdelity representation of the
large population in the literature so far. The specifics of sevgyhole-brain fMRI signals (Supplemental Fig.bp and
tasks are briefed in supplemental materials. effective extraction of meamgful patterns (Supplemental
In the first Q1 release of HCP fMRI dataset, 77 participanisig 10c) [29], [30], [32]-[35]. In comparison with previous
are scanned. Specifically, 58 are female and 19 are male, 3 \gfks of sparse representation of fMRI signi@6]-[39], the
betweerthe ages of 225, 27 are between the ages of 28, major novelty here is that our framework holistically considers



the wholebrain tfMRI signals by using a bidata strategy and components and their weight coefficient parameters across the
aims to infer a comprehensive collection of functional networkshole brain for each subject, our major task is to characterize
concurrently, based on which their spatial and temporahd interpret them within a neuroscience context. In particular,
characteristics can be quantitally described and modeled. the sparse representation and iditary learning of

In this framework, we aim toehrn a meaningful and whole-brain fMRI signals (Supplem¢ad Fig.10 are performed
overcomplete dictionary of functional bas€g§sn (m>t, for each individual brain separately and thus the spatial and
m<<n) [30] for the sparse representation ¥f For the temporal correspondences of those characterized dictionary

taskbased fMRI signal sety whofB @ T4 , the components, or functional networks, across a grouplgésts
empirical cost function is summarized in Eq.(1) by comside  will be another major objective, as detailed in the next section.
the average loss of regression of n signals. One major advantage of the sparse coding strategy is that the
P 5 sparsity or scale of spatial regions in each component can be
"Q'O'I"s— JbwhOo (1) controlled and concentratted b\

based on current knowledge in machine learning field there is

] ) . n o gol den criteria about def |
With the aim of sparse representation usigthe loss ¢ mpl oyed the shased en theycritesidn ofe-= 1 .

function is defined in Eq.(2) with & regularization that yields groupwise consistency of derived HAFNI componen@ur

a sparse resolution of , and herea-is a regulazation eyperimental results st that based on the results in
parameter to tradeff the regression residual and sparsity |eVe|suppIementaI material Section 1.B, the spatial maps and
Ib(bFiOfd"Qsegb 0s _$ S () temporal patterns are not so s

a Q certain level such as 1.0 to 2Ahother critical parameter is the

) ) ) dictionary size. After explorinthe dictionary size from 100 to
As we mainly focus on the fluctuation shapes of basis MRy in the supplemental mategt is clearthat the meaningful
activities and aim to prevebtfrom arbitrarily large values, the nenyorks changes very slightly witiiternation of dictionary
columnsQhQ B 8 Q are constrained by Eq.(3). size.Finally, the dictionary size in this paperdgperimentally

6f Ofa (88 Q pfBah QQ p (3)  setas 400.
C. HAFNI Networks dentification
[ ET %@ o : @) - ict |
}1 ; E%@ I® 8 8 We have applied the above dictionary learning and sparse

representation methods on the pulliavailable HCP release
In brief, the problem of dictionary learning canreevritten tfMRI datasetsSpecifically, for each single individual, seven
as a matrix factorization problem in Eq.(4)Y)], and we use the scans of task fMRI data and one scan of resting state fisfal d
effective online dictionary learning meth$80] to derive the were acquired and preprocessed separat€he HAFNI
atomic basis dictionary for sparse representation of win@en pipeline was applied to each scaof each subject
fMRI signals. Here, we employ the same assumption @sdependentlySo all analysis results in the following sections
previous studie$25], [36]-[39] that the components of eachare based on the single scan of each suljjeen the following
voxel 6s f MRI signal ar e s p procederesacaibdth tuarditativee measarementsn amssuglr at i o
those components is linear. examination of the spatial and temporal pattern of the obtained
One common use of sparse representation of signals witctional networks (dictionary atoms)ere applied tadentify
limited number of atoms from a learned dictiondsyto networksthat can be welcharacterized and interpreted by
denoise. For our application, with the sparse representaticaxisting brain science kndadge.Specifically, in tfMRI data,
the relevant basis components of fMRI activities will besome of these networks have similar spatial and temporal
selected and linearly combined to represent the original fMREtterns as the activation detection results (contrast maps) by
signals. With the same regularization in Eq.(4), we performsing general linear model (GLMas shown in Supplemental
sparsecoding of the signal matrix using the fixed dictionaryFigs.2a2j (10 randomly selected subjeyt As the time series
matrix D in order to learn an optimized matrix for spare of each basis dictionary is considered as a functional network
representation as shown in Eq.(5). component, we aim to characterize and model as many network
P components as possible (as already illustrated in Fig.1), and to
a QQ%@) G == ©®) seek their correspondences across individtaihs. To achieve
this goal , we not only compa
Eventually, the fMRI signal matrix from a singkeu b j e teipgbral shape pattern (white curve irame (I11) of each panel
whole brain will be represented by a learned dictionary matrik Fig.2a) with the task paradigm curve (red curve iaga (I11)
and a sparse coeffent matrix (Supplemental Fig.lOHere, of each panel in Figd), each red curve for onepsezate task
each column of th&) matrix contains the sparse weights wherontrast), but also examined the similarity between the
interpreting each fMRI signal with the atomic basis signalsidi ct i onary at omds spabaged)in refe
the dictionary. Meanwhile, each row of tbienatrix represents each panel in Figd) and the activation mamage (I1) in each
the spatial volumetric distributions that have references fmanel in Fig.2) obtained by traditional GLM method.
certain dictionary atoms. Wi these decomposed dictionarySpecificdly, we defined the spatial overlap rate (Eq.(6)) to



measure the similarity of the two maps. Our rationale here as 4.0 for reasonable patterns, andHi#d-NI network of the
that each identified and characterized HAFNI componesubject corresponding to the contrast is selected as component
should exhibit both high temporal similarity with the task#256 (out of 400 candidate ones) with both high spatial
paradigm and high spatialnglarity with the GLM-derived similarity with activation pattern and temporal correlation with
activation map. In addition, we evaluated the graige contrast design. After summarizing the identifioatiresults
consistency of the dicti on drony allarttasksbagross pda subjexts, there fare rtotallyc28 w
maps across all of thdCP subjects, as shown in Fig.2s an consistent taskvoked functional networks identified,
example, and only those most grewjse consstent dictionary constituting the current initial version of HAFNI. The complete
atoms are considered as HAFNI components. list of the final HAFNI networks vs. GLM contrast maps can be

In this work, we aim to construct an initial set of functionabccesed on our website at:
atlases (called holistic atlases of functional networks ardtp://hafni.cs.uga.edu/finalizednetworks_Task.html.
interactions (HAFNI)) characterizing consistent functional For resting state networks (RSNSs) identification in seven
brain networksicross HCP subjects in all seven tftMRI dataset§MRI datasets and one rsfMRI dataset across all 68 HCP
More specifically, in ttMRI data, for each single contrast mapubjects, since the temporal characteristics of RSNs have not
of an individual subject obtained by GLM, we first applied beenfully understood or quantitatively described, we adopted
levels of zscore thresholds (1-4.0 stepped by 0.5) on Note the spatial similarity measurement defined in Eq.(6) to identify
that selecting milti-level of threshold is because there is naneaningful RSNs. In this work, we adopted the ten
golden criterion for significance of activation detection, and werell-defined RSN templates provided in the literafdr. For
need to find a suitable match between the activation and thach tfMRI/rsfMRI dita of each subject, we identified the
component networkAfterwards we picked up 10 candidate component (dictionary atom) with the highest spatial similarity
networks with higher spati similarity with that contrast map with each specific RSN template. Then a team of six experts
of specific threshold and temporal correlation with task contragtiantitatively and qualitatively compared each identified
design, as shown in ourcomponent 6s spat itarhap withf ther e n c €
websitehttp://cobweb.cs.uga.edu/~hafni/lHCPTask_ReportThecorresponding RSN template in each task/resting state fMRI
esholded/HTML/. The spatial similarity is defined by thedata of each subject. If the mean spatial similarity value of the
overlap rate Fbetween spatial pattern of the network (A) anddentified component with the corresponding RSN template
the spatial pattern of the contrast maps serving as the tempkateoss all 68 subjects is less than 0.2 in any of the
(T): ttMRI/rsfMRI data, this RSN component will be discarded.
So ©) For example, in the emotion task data of subject 1, the

3 identified components with the corresponding RSN templates

are shown in

A team of experts then quantitatively and qualitativelyttp://hafni.cs.uga.edu/HCPResting_Report/Report_Resting_S
identified the best matches between HAFNI networks artdte 01.htmI#EMOTON. After quantitative and qualitative
GLM contrast mapsSeven experts were involved in theinspection by the experts, RSN #5 representing the cerebellum
network identification. They searetl network candidates was discarded for all 68 subjects in the tfMRI/rsfMRI data.
separatelywhile the final resulé are based on the agreemenFEinally, nine meaningful RSNs were successfully identified in
reached by voting procedureFor example, for the contrast 5all of the seven tfMRI datasetsd one rsfMRI dataset ofl a
of the motor task, the GLM spatial maps and HAFNI candidatibjects. Supplemental Figs-4iashow the nine identified
components are shown in the linkRSNs via HAFNI in all seven tfMRI datasets and one rsfMRI
http://cobweb.cs.uga.edu/~hafni/[HCPTask_ ReportThresholddataset of 10 randomly selected subjects. The complete list of
d/HTML/Report_sib_11_MOTOR.htmi#MOTOR_cope_05. the final HAFNI RSNs are at:
The groupwise GLM activation and individual activations http://hafni.cs.uga.eduf/finalizednetworks_Resting.html
with 7 level thresholds are shown in the first 3 rows. For eachWe further examined the possible functional identities/roles
level of threshold, there are 10 candidate HAFNI component$ these HAFNI RSNs based on existing brain science
arranged in the same column. Note that eashdidate is knowledge and literate reports. Specifically, RSNs #1, #2 and
visualized with the spatial map and temporal curve overla#B are all located in the visual cortex, and contain medial
with the contrast design. Our experts first selected arccipital pole (BA 17) and lateral visual areas (BAs 18/19),
appropriate level of threshold for the GLM activation, andthene s pect i vel y. RSN #4, wi del vy
the final HAFNI component was selected based on both thee t wo r k 6[42](iizlkdes the mddl prefrontal gyrus
similarity with spatial activation map and the correlation ofBAs 9/10/11), anterior (BAs 12/32)/posterior (BA 29)
temporal curve and task desidipte that both spatial patternscingulate cortex, and bilateral supramarginal gyrus (BA 39).
and temporal time series shapes are taken into consideaatio®RSN #5 mainly includes preand posicentral gyrus (BAs
they provide complementary information regarding thé/2/3/4), and the supplementary motor area (SMA) (BA 6), and
neuroanatomic disbutions and temporal dynamics ofisknown as the sensorimotor network. RSN #6 is known as the
functional activities. Both sources of information carmudi t or y net wor k, including t
contribute to the identification and characterization of thosesular cortex and lateral superior temporal gyrus. RSN #7 is
brain networkslin this example, the GLM threshold is selectedonsidered as the executive control network, including anterior

Y ORY


http://hafni.cs.uga.edu/finalizednetworks_Resting.html

cingulate ancparacingulate regions. Finally, RSNs #8 and #8ange of 0 to 400. The threshold is defined by the number of
have strong lateralization in the right (RSN #9) and left (RSNonzero elements in the top 20% percentile across all voxels,
#10) hemispheres, containing the middle frontal and orbitab that we would obtai similarly-sized HHR for different
(BAs 6/9/10) and superior parietal areas (BAs 7/40). fMRI datasets. The rationale for using a single uniform
Moreover, for comparison purpgsewe performed threshold in defining the HHR is based on our observation that
independent component analysis (ICA) on the wiolen the values of&/ £ across voxels are typically normally
rsfMRI data of each single HCP subject using FSL MELODIdistributed in all tftMRI datasets with similarean and standard
tool [19] as an independent source to evaluate the identifieidviation (please see Supplemental Fjg\We have examined
HAFNI RSNs from tfMRI data. Specifically, we setthe effect of threshold by performing the same analysis using
ICA dimensionaliy as 100, which has been proven appropriatgifferent thresholds and have obtained similar conclusions
and effective in the literature. We adopted the same spat{please see Supplemental Table YIlAso, we definethe
overlap rate metric for identifying corresponding ICAhighly-specialized regions (HSR) as voxels that are involved in
components. The ICA component with the highest spatitdskrelated networks.
overlap rate with a specific RSN templ§dd] was determined
as the specific RSN in the rsfMRI data of a specific subject. lll. RESULTS
It is essential to mention that our HAFNI framework is . . .
independent from the GLMNdased fMRI activation detection A GI’OUp-W.ISE C.o'n3|stent Tasé.(voked Functional Networks
and ICAbased resting state network identification. Without" totél, we identified and confirmed 5, 3, 2, 2, 2, 3 and 6
effective interpretation of the hundreds of networks generat@gPUPWise consistent tasgvoked networksor called HAFNI
by HAFNI, the GLM activation and ICA results are employed®mponentshere, for motor (MaM5 in Fig.2a), emotion
to identify meaningful networks in HAFNI. On the other hand(EX-E3 in Fig2a), gambling (GAG2 in Fig2a), language
further comparison of spatial patterns and temporzgtlkl'l-2 in Fig2a), relational (RIR2 in Fig2a), social (S1S3in

characteristics acrosisese methods is a reasonable verificatioh'9-22), and working memory (WM) (WW6 in Fig2a)
of the effectiveness of our HAFNI method networks, respectively. These networks are correlated to

_ . specific task performance, e.g., M1 is for right hand movement,
D. Spatial Overlap Patterns among Taskoked and Resting M2 is for tongue movement, M3 is for global motion task, M4

State Functional Networks is for left hand movement, E1 is for emotional faces stimulus,

To quantitatively measure the overlap patterns, we adopted &2 is for simple shap&imulus, W1 is for zback memory task,

following scheme to dne the spatial overlap rate (OR): and W2 is for eback memory task. Additional details about the
0 Y= (7) network description are referred to Supplemental Table KXilll

particular, these 23 HAFNI components are reproducible and

. consistent across all of thdCP subjects we examineds
In the above formulaj represents the number of overlap : : . ; : o

. e o : shown in Supplemental Fige-2j and in the visualizations on
components in a specific situation and it is variable undér website:

different conditions (task contrast, HAFNI RSNs or thelrht ://hafni.cs.uga.edu/finalizednetworks_Task.html. In

combination). For instance, in motor task, there are 5 contra Bs2b-2d and Supplemental Figa-3g, the averaged spatial

with which ‘we can identify the corresponding HAFNImap of each HAFNI component acraas subjects is shown
components. We calculated the percentage of the voxels

) . - and compared with the corresponding grovpe
simultaneously recruited in componets to those voxels . I . .

; X o GLM-derived activation map. It is evident that the averaged
involved in at least one component. In this casbanges from

2 to 5. Similarly, in the calculation of OR in HAFNI RSNs, HAFNI ~components are similar to the growpse

changes from 2 to 9. It should be noted that when we esum:gﬁléM. derived maps. Quaitatively, Supplemental Table |
provides the spatial ovap rates of HAFNI components and
OR between taskvoked HAFNI components and HAFNI . N
. GLM-derived activation maps for 20 randomly selected
RSNs,2 are the voxels belonging to both of them at the same . . . .
individuals, and the average of spatial overlap rate is 047.

time, and2 represents the voxels involved at least one ...
' ition lemental le 1l how h P
task contrast or one HAFNI RSN. dddition, Supplemental able SNows the €a

. . L ' correlations of the HAFsSHles comp
The highlyheterogeneous region (HHR) region is defined b . .
the number of networks/components itweal within the ¥nd the task paradigm curves for the same 20 subjects, and the

. . N . _average correlation is 0.3Bhese results demonstrated that the
region Specifically, an HHR region is composed of a collection,. .. . : .
of voxels that dictionary learning method and the HAFNI identification
) £ oDiEe o~y . procedure can effectively uncover meaningful teskked
((210¢ ! ~ LUREIA (8) functional networks, and can serve as a novel, alternative
gpproach to detecting traditionakipnceived taslbased

Thus, any voxel on the cerebral cortex with the number L Lo L
y . . . .activationsln Table I, the individual variation between HAFNI
non-zero elements (i.e., the number of involved networks) in its . . o .
. ) - ) and GLM is substantial, the reason of which is attributed to the
corresponding column in coefficient matég £ greater than

a predefined threshold would be included in the HHR. As ir];OIIOWIng tWO aspets. 1) The regression strategy in G.L.M th"?‘t
) . ) ; nly employ limited regressors might not be sufficient in
this work thedictionary size was experimentally set as 40 . . . : ; .
) . S dealing with the diversity of hemodynamic behaviors and the
(please see the below section for more detas)E is in the



heterogeneous brain regions, so that the results from the Glhtip://hafni.cs.uga.edu/finalizednetworks_Resting.html In

is fragile and is different frorthe HAFNI results. 2) The GLM addition, the averaged HAFNI RSNs maps acrossH&lP
method might not be capable of determining task relatedibjects are shown in Fign3 and quantitatively the mean
activations in the areas with complicated signals, while ttepatial overlap rate of nine HAFNI RSNs is ashhig 0.59, as
HAFNI method can decompose task related components detailed in Supplemental Table Ill. Supplemental Table IV
these areas shows the spatial overlap rates of nine HAFNI RSNs across all
Importantly, a fundamental differencetiveen the HAFNIs HCP subjects. These results demonstrated that no matter what
and GLMbased activation maps is that the HAFNLkhe task is, the nine RSNs can be robustly reconstructed and
components are simultaneously derived from the optimalhgproduced by the sparse representation and HAFNI
de-composed fMRI signals based on the sparse representatidentification method. Thus, the identification of these HAFNI
of wholebrain data (as illustrated in Fig.1), while theRSNs lays out a solid foundation to explore the question of to
GLM-based maps we obtained from individual fMRI signals what extent the RSNs spatially overlap and interact with
based on separate modkiven subtraction procedures. Fortaskevoked functionahetworks obtained in the above section.
instance, the fivelAFNI components (MAM5 in Fig.2a) in the For comparison purpose, Fig.3the ninth column) shows
motor tfMRI data can be effectively and robustly derived bthe identified RSNs via ICA in the rsfMRI data of themsa
characterizing the most relevantoats from a library of subject. Supplemental Tabledétails the mean overlap rates of
candidate dictionaries (the panel (I) of Fig.1), which canine HAFNI RSNs in rsfMRI datara those by ICA across all
maximally account for the wholerain fMRI signals. In subjects. The mean overlap rate is 0.56+0.07 for HAFNI RSNs,
contrast, the modelriven GLM procedure is applied onand is 0.55+0.09for ICA. Both qualitative (Fig.8 and
individual fMRI signals whose compositions could beSupplemental Figs.44§) and quantitative (Supplemental Table
contributed fom multiple functional processes or networks. A¥/) results indicate that the HAFNI method can consistently and
a consequence, the GLM has difficulty in reconstructingeliably identify RSNs in rsfMRI data too, compared with the
concurrent, interacting functional networks, and thus othevidely-used ICA method. However, a critical difference
spatially overlapping networks with different temporal curvebetween the dictionary learning/sparse representation method
(such as the RSNs in the @aull) of Fig.1) other than the task and the ICA methd is that ICA explicitly assumes the
paradigm will be essentially unnoticdd2] [13]. Also, the independence of fMRI signals among different components,
experimental canparison between HAFNI method and GLMwhile the sparse representation does not. Essentially, multiple
method based on synthesized data in Supplemigietiddods. C functional processes or network components (illustrated in
(Performance on Synthetic Datarovides additional sound Supplemental Fig.1) could be spatiallyoverlapping and
evidence that the HAFNI method performs better in interacting with each other in resting state or under task
reconstructing concurréimteracting function networksn the performancg2], [5], [6], [9], [14], [15], and it has been pointed
synthetic experimentsthe HAFNI method exhibits clear out in the literature that fMRI signals are not necessarily
advantages in reconstructing temporal response of netwoikdependenf25], [26]. Therefore, it is more apprdpte and

and is superior in the sensitivity, precision and false discovefgasible to employ the HAFNI RSNs, instead of the
rate of reconstructed spatial maps of concurrent brain networkSA-derived components, to explore the question of how the
Therefore, it is appropriate and feasible to employ the HAFNbtal cortical function is realized by the interaction of multiple
components, instead of the GLd&rived maps, to explore the concurrent neural processes or netwdg{s[8]. In this work,
guestion of how the total cortical function is realized by thehe 9 HAFNI RSNs and other 23 taswoked HAFNI
interaction of multiple concurrent neural processes or networkemponents (in the above section) are simultaneously derived
[2]-[8]. from the same procedure of matrix factorization of wHuzin

fMRI signals (Fig.1), which naturally represents the spatial
o overlap and functional interach patterns among the initial
We went through all of the decomposed dictionarkgiection of holistic brain networks and provides an enabling

components (e.gthe panel (1) of Fig.1) and identified nine y|4tf0rm to explore functional cortical architectures.
reproducible and consistent RSNs in all of the seven thIJZ)I

datasets across all of the HCP subjects3&ighows the nine  C. Spatial Overlap Patterns among HAFNI Components
RSNs (nine rows) in these seven tasks (the first seven columnsBased on the above taskoked HAFNIs and HAFNI RSNs,
for one exemplar subjedleanwhile, for comparison purpose,we examined their spatial overlaps with each other, including
the corresponding RSNs identified by both of the dictionargverlaps among multiple contrastokedHAFNIss within the
learning method and the independent component analysime task and overlaps between -astked HAFNIs and
(ICA) [19] method from rsfMRI data are shown in the eighttHAFNI RSNs. Specifically, K§.4a visualized the overlap
and ninth columns in Figa. It is evident thiaall of the nine patterns in all seven tasks for one ramtioselected subject.
RSNs derived from either tfMRI or rsfMRI data are consisterfirom Fig.4, we can clearly see the substantial overlaps not
with the templatg41], and thus are called HAFNI RSNs hereonly among different contrastvoked components but also
Particularly, the nine HAFNI RSNs can be robustlyetween taskevoked HAFNIs and HAFNI RSNs. Fekample,
reconstructed acresindividuals, as shown in Fig.3c, infor the motortask (the first column of Figa), there exist
Supplemetal  Figs.4-4j, and on our website: multiple regions that are simultaneously recruited by multiple

B. Groupwise Consistent Restirggate Functional Networks



task contrasts and motor/auditory RSNs. In addition, the extemterlaps/interactions with taskvoked networks during task
of spatial overlaps is quantitatively measured by the murab performance.
HAFNI components that each brain region is invdlieand is . L . .
color-coded in Fig.#. Thewidespread red regions in Fig.4 D. Reciprocal Localization of Highlfdeterogeneous Region
. , I . 7 and HighlyspecializedRegions

depict those highly overlapped cortical areas, revealing the g _y P ] 9
functional interaction patterns of the wehiaracterized HAFNI 1h€ previous sections have revealed the common and
conponents in seven tasks. widespread spatial overlaps among 32 whhracterized

Quantitatively, the overall spatial overlap rate (OR) (defineBAFNI components. In this section, we aim to investigate other
in Eq.(7)) result is sumarized in Supplemental Table VI un-characterized network components and their composition
which is interpreted as follows. First, spatial Ové”anatterns over #hcerebral cortex. Our extensive observations of

between/among different contrastoked components iuite such network composition patterns suggest that there are two

common and widespread. For instance, the average Spagigltinct pattgrns for cortical regions, one is involved in n_1u|tip|e
overlap rate for two contrasivoked components in motor,! Un ¢t i onal net wor ks -hetetagengoss t hu
emotion, gambling, relational, social and working memory € 91 0 N ( HaRohgrds, maimynresponding to the task
tasks are 20.6%, 17.7%, 23.3%, 29.4%, 25.3%, and 20.6%"d thereforespescinalmezie d hi gdi g
respectively. Theseesults demonstrated that contrasbked Visual illustration of the HHR along with HSR obtained by
network components within the same task are substantiafg-M-Pased activion detection is shown in Fig.3t can be
overlapped in the spatial domain, suggesting their functionsf€n that HHR regions (red) are tialéy distributed around the
interactions. Notably, the ORs among different contrasts hay&'0le cortex, with very small overlaps with the HSR regions
considerable variation across eavtasks. For example, the (blue). Such observation is quite consistent throughout all of

ORs for language and relational tasks are of 0.8% and 29.49¢ Seéven tasks and across all subjects, as shown in the
respectively. For comparison, we have also calculated th@dditianal cases in Supplemental Figg.6Quantitatively, the
overlap rate between the activation detectioﬁverlap rates between the HHR and HSR regions of 20

(activatedbaseline) results obtained ke general linear @ndomly selected subjects arevsnarized in Supplemental
. Table VI It is evident that the overlap rates are quite small

modd (GLM) in each task, which are summarized in o - )
Supplemental Table XII. As shown in the table, the overlap rafB10stly <5%). In addition, the difference between HHRs and

between the activation detection results from GLM follows th_E|SRS can b? revealed by their tempqral characteristics. For
same trend as in the contrastked components from HAFNI instance, while the mean tfMRI time series across alldiels

yet with a substantialljower value. The explanation for the Of the HSR region (Figdil) is highly correlated with the task
higher spatial overlapping rate of HAFNI results is the fact th@@radigm, as expesd, the mean tfMRtime series of HHR

the datadriven, automatically identified components obtained€9ion (Fig.31) is much more complex. Moreover, we have
by HAFNI are able to include regions with more complicate§Xamined the component histogram of the HSR region and the

functional characteristics, whi those regions would more "HR region by summing up the number of Azeto elements

frequently serve for the functional interaction thus tend to K &ch component in each voxel within theeg region, and
recruited in multiple contrasts then normalized them to the sum of 1. The histograms of the

Second, spatial overlap between/among different HAFNISR region and HHR region of a randomly selected subject
RSNss is also quite common and widespread, as showigi4 during motor task are shown in Fig.5¢c and Feg % can be seen
and SupplementalTable VI Notably, compared to task @t the component histogram of HSR region is highly
contrasts, HAFNI RSNs have relatively more consisteffPN®ntrated on certain components. Interestingly, the top two
overlap patternsAs shown in Supplemental Table \the ORs components in the histogram are exactly the components that

of two HAFNI RSN in seven tasks range from 9.3% to 15.4952d been identified as taskoked HAFNI networks (M1 and
and the ORs of three HAFNI RSNs range fromP8.0 2.2%. M3), |nd!cat!ng the c_omponemnse correspondence between
The spatial distributions of these overlaps in one subject &r-M activation deteedns and HAFNI results. _
visualized on the cortical siace in the second rows of Fig.4a O the contrary, the component histogram of HHR is more

and Fig.. Itis interesting that these RSNs overlap patterns af¥eniy-distributed - and - composed  of various types of
reasonably stable and reproducible across a vasietgsks, components. In particular, there are RSNs highly involved in

suggesting the reliability of RSNelated organizational the HHR_’ including RSN 3 and RSI_\I 7 (high_lighted in th?
architecture of the human brain. figure), with RSN 7 being among the highest active networks in

Third, there are considerable spatial overlaps betwegi‘le region. As expected, taekokgd HAF_NI components I.'ke
taskevoked HAFNIs and HAFNI RSNs, as shown in the thir(ﬂ}/_Il and M3 alsg have a rela_ltlvely high percentage_ In the
rows of Fig.4a4b and Supplemental B VI. The average histogram, showing that certain parts of HHR participate in
OR between task contrastoked components and HAFNI those tasks as well. In(_JId|t|on, such hetgrogeneltles in the
RSNs is 9.7%, and in particular, this OR value in Workinﬁompor?en.t h|stograms in HH_Rs are confirmed qnd |Ilgstrated
memory even reaches 20.0%. More quantitative details for edth € individual vxel level in Supplemental Fig.8vhich
task are in théast row of Supplemental Table Min general, S1OWs much more complexity and heterogeneity in the

these results quantitatively demonstrated an interestiﬁgmponent composition of the vpxels_in HHR thaose in the
phenomenon: RSNs  exhibited  substantial spatiéfpxels of HSRFurther, we have investigated the overlap of the



activation detection results obtained by GLM across multipleomponents. Experimental results have demonstrated that this
tasks, by obtaining the intersections of the contrast mapevel strategy can effectively and robustly reconstruct
(taskbaseline). It was faud that there existertain regios in  concurrent functional networks, including both tasloked
the brain that would be involved in the contrast maps froldAFNIs and HAFNI RSNs, which can be reproduced across
different tasks using GLM. A spatial comparison of thosendividuals. However, despite that we have characterized and
crosstask GLM result regions with the frequadiSR shows interpreted 32 HAFNI components in spatial and/or temporal
that they are largely in accordance (average similarity of 65%gpmains, there are still many other components remaining to be
which is rasonable as HSR is maincomposed of the characterized and terpreted. These networks could be
taskevoked HAFNI networks as shown in the analysis aboveunknown networks or just noise networks, which need effective
Therefore, due to the complex network composition, thosaethodology to explore in the futuréeThe 32 HAFNI
HHR regions could not be identified solely by their temporatomponents reported here is just a start point towards holistic
time series pattern and could onlg bharacterized by their atlases of functional networks in tHeture. Notably, the
network compositions like Figeb Quantitatively, we usedthei dent i fi cati on of HAFNI compon
histogram entropy to quantify the difference in the complexityisual inspection in this work. In the future, novel methods
of the component histogram between HSR and HHR. Thhould be developed to automatically identifynsistent and
results shows that there is a significant differeneéwben reproducible HAFNI components across individuals an
those two regions regarding the histogram entropy (p<0.0Pppulationsas well as characteriziragtefacts components
and the detailed quantificationseashown in Supplemental GLM-based activation detection and I®Ased clustering
Table IX In addition, we have defined the histogramhave been arguably the dominant methods in tfMRI and rsfMRI
concentration as: data analyses, respectiveln. this work,an alternativenovel
#1171 AAT COABET A@ (9) sparse epresentation and dictionary learnimgthodology is
which is the summegdercentage of the top 5 components iproposed toeffectively infer the spatial overlap/interaction
the histogram. A higher summed percentage value indicateatterns among those brain networks. Experimental results
that the distribution of the histogram is more concentrated dvave revealed the common and widespread spatial overlaps
several dominant components. The concentration values of &lhin and among both taskvoked and resting state networks,
randomly selected subjectseashownin Supplemental Table and particularly discovered the reciprocal localization of HHRs
VII. Again, there is a significant difference between HSR arahd HSRs. In the future, the regularity and variability of such
HHR (p<0.01), quantitatively verifying the histogramreciprocal localization patterns of HHRs and HSRs should be
difference betwen HSR and HHR observed in Fig.bhe examined across individual brainand be correlated with
above results demonstrated that HHRs and HSRs ateuctural neuroimaging data.ln addition, extensive
reciprocally bcated on the cerebral cortex within a specificuantitative studies should be performed to comparsgaese
cognitive or functional task. representation methodith the GLM and ICA method§l9],
Moreover, we examined frequent HHRs-HIFR) and [24] in mapping concurrent networks and spatial overiapise
frequent HSRs (fHSR) across all of the 7 tasks for eacHuture.
individual brain. Specifically, if an HHR or HSR region In summary, our work has inferred and characterized 32
appears at leas?t times across 7 tasks (any possibleeproducible and meaningful functional networks and their
combination from 7 tasks), it is considered as adHR or spatial overlap patterns for each subject in the HCP data,
F-HSR. Thus, to some extent, anrHFR region can be forming an initial version of holistic atlases of funcin
considered as the multipiemand (MD) area of the brajg], networks and interactions (HAFNI). These HAFNIs revealed a
[4], while an FHSR region can be considereds aa new and reproducible functional architecture principle of the
demandspecific (DS) are42]. It is interesting that those two human cortex, that is, reciprocal localizations of HHRs and
types of FHHR and FHSR areas are also reciprocallyHSRs. In the future, it will be invaluable to further assess
distributed and widespread across thebeal cortex, as shown possible gerations of HAFNI components and interactions in
in Fig.6 and Supplemental Fig.th short, our results suggestbr ai n di sorders such as Al zhei
that the functional cortical architecture is composed of a
reciprocal combination of frequent highdpecialized regions ACKNOWLEDGEMENT
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Fig. 1. The decomposed dictionary componesftthemotor task fMRI data of
one single task(l) and thecorrespondingeference weighmaps(14 maps
shown in (I1)) by applying thelAFNI method to the wholerain fMRI signals.
Figures (a) and (b) visualize 14 selected dictionary components which are
either motor taslevoked networks (MM5) or resting state networks
(RSN1-RSN9), respectively. The green bars in (I) show 400 dictionaryanietw
components (indexed vertically) and the spat@tzerovoxel numbers that
each component 0s reference wei ght
horizontal height). The panels in (Il) visualize the temporal time series (white
curve) and spatial distribiogh map (eight representative volume images) of
each network. The red curves represent the task codesigis of the motor
tfMRI data.

10

M’;

(1) (nn ) L) i) ai

[9) (I1 ;a [)) :: ;: (I “ (I) (1I) 1I> (l (I ll
b Y o

|"l‘ ‘l"

W ! 3 Y Wl | ) '
Jam |\ 1)) ()

Aﬂﬁhﬁ

([]I) (111)

Y
W“ | |
m m) (I) \(l (1) ;; (1)

P

< ] ;
S EBEe
>

Y
o !

¥

SCODOL®

ma p

s;i () il W) 1II) m l
}<1n) |ain

W

(p (1;Q (p

Component
Signal

Group | Group

Sub4| SubS | Sub6| Sub7|Sub8 | Sub9 |Sub10,verage GLM

BOEEOE

4
L

8
a
8
8
a
8
8

SO0 DO00SGS

&
L

SOoOO0000060
OSSO OOOOES
SO OOEEe
SO 00000006O
OSSOSO EOS
20 2020 26 20 X K XK X

o R R B R B

g

L0090 000000

A

contains (represented by

he



11

@)

e
&
&

o B b Lo oo B B B Lo B B
S8BT I
SOSCOODBBIP:
DODOOOOBDOS-
SOPSOPOLEES
L JE R e e JE R R
o R B go: oo R ke B B b
SV EBIB
SSSBBBEOBB
> > > >l > > >
eceeSOeeS®
eeseoeeeS

B
&
S
=
®
&

(d)
Fig. 2. The taskevoked HAFNI components in seven tfMBatasets and the
comparison with GLMderived activation mapsSeven tasks are language
network (L), motor network (M), gambling network (G), emotion network (E),
social network (S), relational network (R) and working memory network (WM).
(a) Examples of 2 taskevoked HAFNI components in seven tasks in one
subject. Each panel includes one HAFNI component and has thrdigsds
a-rrry. () One representative slice from a HAFNI componentdés spati al
reference weight map. () The corresponding represertatlice of the (b)
activation map by GLM. (lll) The comparison of task paradigm curve and the
HAF NI component 8s tempor al t iFwise series. (b) Exampl es of group
consi stency of the HAFNI componentds spatial reference weight maps acr
different HCP subjectslQ subjects shown here). Two HAFNI components in
the motor task are shown. The last two columns are the gvizgpaverages of
HAFNI components and the grouypse GLM activation maps. (c) Growpise
averages of 12 identified HAFNI components ac®8$CP subjects for the
four tasksas well as the corresponding averaged Gddvived activation maps
(right column). Six representative volume slices were selected for visualization
for each component. (d) Growgise averages of 11 other identified HAFNI
components across HRC subjects for the three taskas well as the
corresponding averaged GLberived activation maps (right column).
Similarly, six representative volume slices were selected for visualization for
each component.

(©)
Fig. 3. The nine HAFNI RSNs identified from seven tfMRI datasets and one
rsfMRI dataset and their comparisons with corresponding-d€dved
components. (a) Examples of 9 HAFNI RSNs (nine rows) in seven tfMRI
datasets (the first seven columns) in one subjee.€lghhth column shows the



