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Abstract. Tremendous efforts have thus been devoted on the establishment of 

functional MRI informatics systems that recruit a comprehensive collection of 

statistical/computational approaches for fMRI data analysis. However, the state-

of-the-art fMRI informatics systems are especially designed for specific fMRI 

sessions or studies of which the data size is not really big, and thus has difficulty 

in handling fMRI óbig dataô. Given the size of fMRI data is growing explosively 

recently due to the advancement of neuroimaging technologies, an effective and 

efficient fMRI informatics system which can process and analyze fMRI big data 

is much needed. To address this challenge, in this work, we introduce our newly 

developed informatics platform, namely, óHAFNI-Enabled Largescale Platform 

for Neuroimaging Informatics (HELPNI)ô. HELPNI implements our recently 

developed computational framework of sparse representation of whole-brain 

fMRI signals which is called HAFNI (Holistic Atlases of Functional Networks 

and Interactions) for fMRI data analysis. HELPNI provides integrated solutions to 

archive and process large scale fMRI data automatically and structurally, to 

extract and visualize meaningful results information from raw fMRI data, and to 

share open-access processed and raw data with other collaborators through web. 

We tested the proposed HELPNI platform using publicly available 1000 

Functional Connectomes dataset including over 1200 subjects. We identified 

consistent and meaningful functional brain networks across individuals and 

populations based on resting state fMRI (rsfMRI) big data. Using efficient 

sampling module, the experimental results demonstrate that our HELPNI system 

has superior performance than other systems for large scale fMRI data in terms of 

processing and storing the data and associated results much faster. 
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1 Introduction  

Understanding the organization of brain function has received significant interest since the 

establishment of neuroscience. During the past two decades, functional magnetic resonance 

imaging (fMRI), which is an in-vivo neuroimaging technique, has revolutionized the functional 

mapping of the brain [1-8]. Specifically, task-based fMRI (tfMRI) has been widely used to 

record functional brain activities during a specific task performance and further to identify brain 

regions that are functionally involved in the task performance [2, 4, 5]. Meanwhile, resting state 

fMRI (rsfMRI) has also received intense interest more recently to acquire brain activities while 

participants are in a task-free state. The coherence in the functional brain organization which is 

free from the task performance constraint can be reflected based on the spontaneous signal 

changes during resting state [1, 3-8]. 

 

Given the importance of fMRI (including both tfMRI and rsfMRI) data for functional brain 

mapping, tremendous efforts have been devoted on the establishment of fMRI informatics 

systems which recruit a comprehensive collection of statistical/computational approaches for 

fMRI data analysis [9-14]. For example, MEDx is one of the earliest tools which was produced 

to incorporate advances in neuroimaging methods in 1993 [9]. Later on, FSL (FMRIB's Software 

Library) toolbox was developed to bring more insights to the neuroscience analysis tools and 

since June 2000 it has helped researchers globally apply FEAT, MELODIC, FABEER, BASIL 

and VERBENA tools for fMRI data processing and analysis [10, 11]. Moreover, statistical 

methods and tools have become one of the main tools to study brain networks and connectivity. 

For example, statistical parametric mapping (SPM) is one of the most influential tools which 

have been designed for brain imaging data sequence analysis from different cohorts or time-

series [12]. Analysis of Functional NeuroImages (AFNI) package is another tool to visualize and 

statistically analyze of fMRI data sets [13]. Furthermore, some have dedicated their resources to 

create a concentrate database to index the context and content of the fMRI literature in a 

searchable fashion, considering the multidisciplinary nature of fMRI researches and thousands of 

investigators around the globe. Fox and Lancaster have discussed demands of such a system and 

proposed BrainMap to address required applications [14, 15]. Although significant successes 

have been achieved for these fMRI informatics systems [16, 17], a considerable limitation is that 

all of those state-of-the-art systems are especially designed for specific fMRI sessions or studies 

of which the data size is not really big. As a consequence, there is difficulty for those systems to 

preprocess, analyze, and visualize fMRI óbig dataô simultaneously. 

 

With the advancement of neuroimaging technologies, the size of fMRI data is growing 

explosively. Given the lack of a uniform resource center for fMRI data providers, researchers 

and developers, Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC) was 

established in 2006 to facilitate finding and computing neuroimaging resources for functional 

and structural neuroimaging analyses to be a common place to share required tools and data [18]. 

Although it was not for the first time that a government-funded project became an international 

neuroscience resource provider to cover pioneers worldwide, for example Neuroscience 

Information Framework (NIF) in 2004 [19] as well as Biomedical Informatics Research Network 

(BIRN) in 2001 [20], but NITRC was successful and popular to host and provide one of the 

biggest fMRI data-bases named 1000 Functional Connectomes (1000FC) resting state fMRI 

project. [https://www.nitrc.org/projects/fcon_1000/]. Moreover, there are other fMRI big datasets 



that are publicly available for researchers such as OpenfMRI [21] and Human Connectomes 

Project (HCP) [22]. HCP is a recent NIH-funded project devised to map the brainôs 

communication network called connectome. This project provides a collection of neural data 

along with an interface to graphically navigate the data. The OpenfMRI is a National Science 

Foundation funded project established in 2010 to provide resources for researches to upload their 

owned fMRI data and make them publicly available.  

In short, the availability of fMRI big-data has globally attracted increasing attention for 

researchers in the neuroimaging field to test various methods and algorithms based on a óbig dataô 

strategy. For instance, the velocity of studies as well as the variety and volumes of neuroimages 

are aggregating exponentially, which are among the biggest challenges nowadays [23]. As Van 

Horn studied and mentioned [24], the calculated neuroimaging data from listed articles in 

representative issues of Neuroimage have been increased drastically and it is being expected to 

grow exponentially. The average size of raw data per study is expected to be 15 GB in 2015 and 

20 GB in 2020. Therefore, effective and efficient fMRI informatics systems which can process 

and analyze fMRI big data are much needed.   

 

To deal with the abovementioned limitation of previous fMRI informatics systems and to address 

the need of effective fMRI informatics system which can process and analyze fMRI big data for 

researches, in this paper, we have developed a HAFNI-Enabled Largescale Platform for 

Neuroimaging Informatics (HELPNI) (http://bd.hafni.cs.uga.edu/helpni). This system is 

established using the extensible neuroimaging archive toolkit (XNAT) web application and 

storage solutions [25], a widely used open source system for storing, managing and analyzing 

medical images and related meta data [26]. RESTful application programming interface makes it 

especially useful for data sharing since the entire databaseôs contents are reachable 

programmatically through the web application [26]. Specifically, the proposed HELPNI system 

in this work, implements our latest computational framework of sparse representation of whole-

brain fMRI signals which is called óHolistic Atlases of Functional Networks and Interactionsô 

(HAFNI) [27]. The main idea of HAFNI is to aggregate all of hundreds of thousands of tfMRI or 

rsfMRI signals within a whole brain of one subject into a big data matrix, which is subsequently 

factorized into an over-complete dictionary basis matrix (represented by the panel (I) of figure 1) 

and a reference weight matrix (represented by the panel (II) of figure1) via an effective online 

dictionary learning algorithm [28, 29]. The time series of each over-completed basis dictionary 

represents the functional BOLD (blood-oxygen-level dependent) activities of a brain network 

(the white curves in the panel (II) of figure1) and its corresponding reference weight vector 

stands for the spatial map of this brain network (the volume images in the panel (II) of figure 1). 

The HAFNI framework has been found to be effective and efficient in inferring a comprehensive 

collection of concurrent functional networks in the whole brain [27]. HELPNI covers the fMRI 

big data both from big data matrix and high volume of subjects.  This happens first through 

employing HAFNI framework to handle the big data matrix for each subject and second by 

utilizing a database to store large scale datasets, and then using an scheduling engine to distribute 

analyzing tasks to multiple machines and proces multiple subjects simultaneously. HELPNI as 

an advanced informatics system, provided us with resources to identify large scale (over all 

1200+) functional connectomes subjects automatically via automated computational pipeline 

based on our HAFNI framework function, to store the results in an organized data structure, and 

to generate detailed reports for data analysis (containing registration, online dictionary learning, 

and identified functional brain networks results) accessible through our web interface publicly. 

http://bd.hafni.cs.uga.edu/helpni


The HELPNI system significantly expands the previous neuroimaging archive toolkit by adding 

HAFNI capabilities, that is, HAFNI-enabled, while significantly enhancing HAFNI by 

integrating the advanced informatics system.  

 
Fig.1. (I) The decomposed dictionary components from the fMRI data during one single task and (II) the 14 

corresponding reference weight maps by applying the HAFNI method to the whole-brain fMRI signals. This figure 

visualizes 14 selected dictionary components which are either motor task-evoked networks (M1-M5) or resting state 

networks (RSN1-RSN9). The green bars in (I) show 400 dictionary network components (indexed along x-axis) and 

the spatial non-zero voxel numbers that each componentôs reference weight map contains (represented by the 

horizontal height of each bar). The panels in (II) visualize the temporal time series (white curve) and spatial 

distribution map (eight representative volume images) of each network. The red curves represent the task contrast 

designs of the motor tfMRI data 

 

The rest of this paper is organized as follows. We will describe the methods of development in 

addition to obtained results of HAFNI implementation in Section 2. We will also discuss the 

significance of this system in comparison to the previous methods of fMRI analysis studies. 

Results are provided in Section 3 and discussion and conclusion are in Section 4. 
 

2 Method 



In this section we first provide a technical overview of HELPNI system and then we discuss 

HAFNI implementation details and its workflow in our system. Subsequently, we will discuss 

the 1000FC database we used as the test bed in this paper. 

 

2.1 Overview of HELPNI system 

The main purpose of HELPNI is to store and manage large diverse imaging datasets to facilitate 

neuroimaging researches with complicated processes and large amount of data. The interesting feature of 

this platform is the extendibility, through which developers can customize their desired analytical and 

visualization tools. The platform uses XML schema to generate custom components, modules, workflows 

for different tiers. As the Figure 2 elaborates, the standardize workflow helps users to a) capture 

imaging/non-imaging data and meta-data (either from neuroimaging machines or other databases 

manually); b) inspect data by means of pre-archiving feature; c) analyze data remotely or locally on-

demand; d) collaborate easier using the predefined filter (In this way, collaborators can be noticed when a 

related dataset were added to system); and e) control access and share data where datasets and linked 

results can be shared publicly through the web interface to facilitate collaboration. 

 



 



Fig.2. HELPNI structure and connected components. a) Web builder through which the web application will be built. 

b) HELPNI platform big picture. c) File infrastructure workflow consist of pre-archive and archive in which data 

will be temporary stored and then after user inspection and running required processes, data will be moved to their 

permanent destination where pipelines processes will be run on. d) Client application and users transactions. Local 

and global users connect to the web interface after logging into the system and passing firewall, using their preferred 

client application. Then they will be able to process, share, download and upload data interactively. e) Pipeline 

processing unit(s) that dynamically receive parameters and executives from pipeline manager and after running pre-

defined steps, generate a user friendly report along with required notifications and then will store the results into file 

storage. 

 

In the HELPNI system, we implemented our recently developed HAFNI framework for fMRI 

data analysis using the extendible pipelines. Pipeline is a workflow described in a XML 

document. Parameters could be specified within the XML document or be sourced as another 

XML document. So far we have implemented a few pipelines each of which contains different 

sets of scripts for our HAFNI framework. These pipelines can both extract input parameters from 

subjects automatically or ask users to provide them manually. Pipeline engine works based on 

the Java framework which parses parameters out of XML document and it links sequence of 

activities into a defined process flow and can manage data flow at each step. It can be configured 

to send notification at desired step(s) for quality control or to modify parameters, then restart 

pipeline from where it stopped. We have used pipeline to automate the whole processes of fMRI 

data registration and online dictionary learning (ODL) and to reduce the processing time. It also 

helped to run the data over a very large set of data in much less amount of time as we 

implemented it over the 1000FC data. Pipelines can leverage from distributed computing and in 

this way a huge amount of processes can result in much less computation time.  
 

 

Fig.3. An overview of HAFNI implementation through HELPNI and its workflow. 

 

In this work, we used the 1000FC project datasets as test bed for HELPNI system developing 

and testing. The 1000FC project contains 1200+ resting state functional MRI (rsfMRI) images 
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collected from 33 locations. We defined a workflow to obtain the result as we discuss here. 

Figure 3 shows the implemented pipelines and workflow of our process from the beginning of 

obtaining fMRI data from NITRC to data process steps and finally result reporting. The main 

three steps of this workflow are a) data preparation and modification; b) data process and 

workflow; and c) user interface and data access as detailed in Sections 2.2 and 2.3, respectively. 
 

 

2.2 Data preparation and modification 

At the very first step, users need to prepare data to import to system. We first obtained data from 

1000FC database and modified the data structure as our own predefined structure. After 

modifying hierarchy and trimming data, images with correspondent meta-data should be 

uploaded to pre-archive for primary tests and analysis. The required format of data should be 

created in file system including ID and sequence type as well as any special data type that needs 

to be defined in system. To do so we prepared required meta-data including TR value, field 

strength, gender and handedness of each subject and experiment. Then data were transferred to 

pre-archive as a temporary cache destination for further tests and review of quality (figure 2c). 

Pre-archiving step keeps data integrated and protects them from data loss or corruption. We also 

tested our workflow to fix any possible flaw in implemented algorithms. When data became 

ready and analytical methods turn mature to be modeled in XML schema, we imported data into 

the archive as final destination for viewing purposes and/or running standard processes on 

prepared data. We used curl to upload fMRI data through REST API [30] from command line. 

 
 

2.3 Data process and workflow 

The next step in HELPNI platform is data processing. The raw fMRI data need to be pre-

processed before data analysis. We implemented the rsfMRI and tfMRI pre-processing pipeline 

in HELPNI to address this demand. Our preprocessing step includes skull removal, motion 

correction, slice time correction and special smoothing as well as global drift removal.[8]. We 

used Build and ArcBuild [26] predefined XNAT tools for image session scan selection and 

running processing steps, respectively.  

 

Applying the major processing pipeline is the next step. We integrated our HAFNI (Holistic 

Atlases of Functional Networks and Interactions) computational framework in HELPNI. The 

basic idea of HAFNI framework [27] is to aggregate all of the thousands of fMRI signals within 

the whole brain from one subject into a big data matrix and then decompose it into an over-

completed dictionary matrix and a reference coefficient matrix. Specifically, each column of the 

dictionary matrix represents a typical brain activity pattern and the corresponding row in 

coefficient matrix naturally reveals the spatial distribution of the activity pattern. Typically, each 

subject brainôs signals form an m×n matrix S, with m represents the fMRI time points 

(observations) and n represents the number of voxels. In order to sparse represent the signal 

matrix S using D, we aimed to learn a meaningful and over-completed dictionary matrix  

Ὀ‭ᴙ  (k>m, k<<n), with k being the dictionary atoms (i.e. components). The loss function is 

defined in Eq. (1) with a Љ regularization that yields to a sparse resolution of ‌. 
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Here ‌ is the coefficient matrix and ɚ is a sparsity regularization parameter. In order to prevent 

D from arbitrarily large values, the columns ὨȟὨȟȣȣὨ  are constrained by Eq. (2). 
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Briefly, the problem can be transferred into a matrix factorization problem in Eq.(3) and we 

adopted the state-of-the-art online dictionary learning algorithm [29] for the sparse 

representation of the whole brain fMRI signals.   

 

Once we obtained the learned dictionary matrix D and coefficient matrix ‌, we mapped each row 

in the Ŭ matrix back to the brain volume and examine their spatial distribution patterns, through 

which functional network components are characterized on brain volumes [27]. At the 

conceptual level, the sparse representation framework in figure 4 can achieve both compact high-

fidelity representation of the whole-brain fMRI signals (figure 4c) and effective extraction of 

meaningful patterns (figure 4d) [28, 29, 31-34]. For more details please refer to our recent 

literature report [27].  
 

 
Fig.4. The computational pipeline of sparse representation of whole-brain fMRI signals using an online dictionary 

learning approach. (a) The whole-brain fMRI signals are aggregated into a big data matrix, in which each row 

represents the whole-brain fMRI BOLD data in one time point and each column contains the time series of one 

single voxel. (c) Illustration of the learned atomic dictionary, each dictionary represents one functional network 

component. (d) The coefficient matrix, each row in the matrix measures the weight coefficient of the corresponding 

dictionary over the whole brain. That is, each row defines the contribution of one dictionary to the composition of all 

voxel-wise fMRI signals.  

 



 

The system is designed to feed the preprocessing as the input of online dictionary learning 

pipeline automatically or manually after filtering the preprocessed data. For visualization 

purposes and to make the generated results easy to explore, both preprocessing and ODL 

pipelines will generate a PDF report at the end after which will be automatically uploaded to the 

web-interface. These reports contain generated results from the executed pipelines identified by 

experiment ID appended to pipeline name. For example ODL report contains 400 png files 

sorted sequentially.  

Pipelines can also be set to send notification within different steps of workflow. For example, 

user can be notified when a specific step is done to evaluate the result and then if it meets the 

quality, let the pipeline continue. Otherwise user can modify the input variables and restart the 

pipeline. Also at the end of workflow, assigned users will be notified of a successful run. 

 
 

 

2.4. User interface and data access 

Large scale fMRI data usually needs group-wise analysis and collaborators need to work 

together. In HELPNI, users can connect to system remotely and choose their desired subset of 

archive through bundle feature in the system. Users are also able to email other collaborators a 

link containing selected subset of archive. 

The standard user interface features useful tools including a search box which provides searching 

through all archived subjects and sessions and menus in which users upon their permissions can 

access. Users need to login to system to be able to modify or upload new data but viewing and 

downloading 1000FC data as well as preprocessing and ODL results are publicly available 

(http://bd.hafni.cs.uga.edu/helpni). User can browse experiments and data via three methods. 

One is by selecting project and subject subsequently, the other is through searching for a subject 

name from search box, and the last is through selecting a listing. Where user can input certain 

information of project/subject or image modality and then query a list containing correspondent 

filtered data. 

 

3 Results 

We tested the proposed HELPNI platform by applying the implemented computational 

framework of HAFNI on one of the largest open-source resting-state fMRI (rsfMRI) database: 

1000 Functional Connectomes project (known as 1000FC). This database has gathered more than 

1200 rsfMRI datasets independently collected from all over the world containing over 130 Giga 

Bytes of data. Table 2 summarized rsfMRI datasets. Age, sex and imaging center information are 

provided for each of datasets and all subjects have been uploaded to the HELPNI. As detailed in 

Section 2, HELPNI automatically preprocessed the raw rsfMRI data, extracted the rsfMRI 

signals from each subject, applied the HAFNI computational framework, and returned and stored 

meaningful experimental results. In this experiment, we used 8-core Intel® Xeon® E5-2650 v2 

2.60GHz, 20M Cache CPU and 32GB RDIMM, 1600MT RAM. With the help of HELPNI, we 

identified consistent and meaningful functional brain networks across individuals and 

http://bd.hafni.cs.uga.edu/helpni


populations based on rsfMRI big data which are detailed in section 3.1. Moreover, using 

HELPNI possess modularity and plug-and-play capability, we developed an efficient sampling 

module and integrated it with HAFNI framework to speed up the HAFNI overall computational 

time and to automatically calculate and obtain meaningful functional brain networks in a much 

faster fashion. The detailed results are demonstrated in section 3.2. 

 

Table 1. The 1000 Functional Connectomes Project datasets summery. 

Baltimore 
 

(n = 23 [8M/15F]; 

ages: 20-40; TR = 2.5; 

# slices = 47; # 

timepoints = 123) 

Bangor 
 

(n = 20 [20M/0F]; 

ages: 19-38; TR = 2; 

# slices = 34; # 

timepoints = 265) 

Beijing_Zang 
 

(n = 198 [76M/122F]; 

ages: 18-26; TR = 2; # 

slices = 33; # 

timepoints = 225) 

Berlin_Margulies 
 

(n = 26 [13M/13F]; 

ages: 23-44; TR = 2.3; 

# slices = 34; # 

timepoints = 195) 

Cambridge_Buckner 
 

(n = 198 [75M/123F]; 

ages: 18-30; TR = 3; # 

slices = 47; # 

timepoints = 119) 

Cleveland CCF 
 

(n = 31 [11M/20F]; 

ages: 24-60; TR = 

2.8; # slices = 31; # 

timepoints = 127) 

Dallas 
 

(n = 24 [12M/12F]; 

ages: 20-71; TR = 2; # 

slices = 31; # 

timepoints = 115) 

Durham_Madden 
 

(n = 42 [n/a]; ages: 

n/a; TR = n/a; # slices 

= n/a; X timepoints = 

n/a) 

ICBM  
 

(n = 86 [41M/45F]; 

ages: 19-85; TR = 2; # 

slices = 23; # 

timepoints = 128) 

Leiden_2180 
 

(n = 12 [12M/0F]; 

ages: 20-27; TR = 

2.18; # slices = 38; # 

timepoints = 215) 

Leiden_2200 
 

(n = 19 [11M/8F]; 

ages: 18-28; TR = 2.2; 

# slices = 38; # 

timepoints = 215) 

Leipzig 
 

(n = 37 [16M/21F]; 

ages: 20-42; TR = 2.3; 

# slices = 34; # 

timepoints = 195) 

Mi lwaukee_a 
 

(n = 18 [n/a]; ages: 

n/a; TR = 2; # slices = 

20; # timepoints = 

175) 

Milwaukee_b 
 

(n = 46 [15M/31F]; 

ages: 44-65; TR = 2; 

# slices = 64; # 

timepoints = 175) 

Munchen 
 

(n = 16 [10M/6F]; 

ages: 63-73; TR = 3; # 

slices = 33; # 

timepoints = 72) 

Newark 
 

(n = 19 [9M/10F]; 

ages: 21-39; TR = 2; # 

slices = 32; # 

timepoints = 135) 

NewHaven_a 
 

(n = 19 [10M/9F]; 

ages: 18-48; TR = 1; # 

slices = 16; # 

timepoints = 249) 

NewHaven_b 
 

(n = 16 [8M/8F]; 

ages: 18-42; TR = 

1.5; # slices = 22; # 

timepoints = 181) 

NewYork_a_ADHD 
 

(n = 25 [19M/4F]; 

ages: 20-50; TR = 2; # 

slices = 39; # 

timepoints = 192) 

NewYork_a 
 

(n = 84 [43M/41F]; 

ages: 7-49; TR = 2; # 

slices = 39; # 

timepoints = 192) 

NewYork_b 
 

(n = 20 [8M/12F]; 

ages: 18-46; TR = 2; # 

slices = 33; # 

timepoints = 175) 

NewYork_Test-

Retest_Reliability 
 

(n = 25 [10M/15F]; 

ages: 22-49; TR = 2; 

# slices = 39; # 

timepoints = 197) 

Ontario  
 

(n = 11 [n/a]; ages: n/a; 

TR = 3; # slices = 29; # 

timepoints = 105) 

Orangeburg 
 

(n = 20 [15M/5F]; 

ages: 20-55; TR = 2; # 

slices = 22; # 

timepoints = 165) 

Oulu 
 

Oxford  
 

PaloAlto 
 

Pittsburgh 
 



(n = 103 [37M/66F]; 

ages: 20-23; TR = 1.8; 

# slices = 28; # 

timepoints = 245) 

(n = 22 [12M/10F]; 

ages: 20-35; TR = 2; 

# slices = 34; # 

timepoints = 175) 

(n = 17 [2M/15F]; 

ages: 22-46; TR = 2; # 

slices = 29; # 

timepoints = 235) 

(n = 17 [10M/7F]; 

ages: 25-54; TR = 1.5; 

# slices = 29; # 

timepoints = 275) 

Queensland 
 

(n = 19 [11M/8F]; 

ages: 20-34; TR = 2.1; 

# slices = 36; # 

timepoints = 190) 

SaintLouis 
 

(n = 31 [14M/17F]; 

ages: 21-29; TR = 

2.5; # slices = 32; # 

timepoints = 127) 

Taipei_a 
 

(n = 14 [n/a]; ages: n/a; 

TR = 2; # slices = 32; # 

timepoints = 295) 

Taipei_b 
 

(n = 8 [n/a]; ages: n/a; 

TR = 2; # slices = 33; 

# timepoints = 175) 

Atlanta  
 

ages: 22-57; TR = 2; # 

slices = 20; # 

timepoints = 205) 

AnnArbor_a  
 

(n = 25 [22M/3F]; 

ages: 13-40; TR = 2; 

# slices = 40; # 

timepoints = 295) 

AnnArbor_b  
 

(n = 36 [17M/19F]; 

ages: 19-80; TR = 

0.75; # slices = 16; # 

timepoints = 395) 

 

 
 

 

3.1 Group-wise consistent functional brain networks identification using 

HELPNI  

With the help of HELPNI system and the implemented HAFNI computational framework, we 

successfully identified 10 meaningful and consistent resting state networks (RSNs) which are in 

agreement with previous studies across all individuals and datasets in 1000FC database. Figure 

5shows the identified 10 group-wise consistent networks in five randomly selected datasets (that 

are Baltimore, Beijing, Berlin, Cambridge and Cleveland dataset) in 1000FC. Networks #1, #2 

and #3 are all located in visual areas and closely related to visual behavior. Network #4 includes 

ventromedial frontal cortex, bilateral inferior-lateral-parietal and medial parietal areas and are 

often referred as default mode network (DMN). Network #5 covers the cerebellum and 

corresponds to action-execution function. Networks #6, #7 and #8 are related to sensorimotor, 

auditory, and executive control function, respectively. Networks #9 and #10 cover several front 

parietal areas and are closely related to cognition/language paradigms [35]. Figure 6 illustrates 

the identified 10 consistent networks in 5 randomly selected individual subjects from the same 5 

datasets. We can see that the identified 10 functional networks are quite consistent across 

different datasets and subjects and consistent with the templates in previous studies [35]. 

Quantitatively, we calculate the spatial overlap between the identified networks and templates 

which are detailed in Table 2 and Table 3. The spatial overlap is calculated as the percentage of 

the overlapping area between our identified networks and templates (Lv et al., 2015).  Based on 

these results, we can see that our developed HELPNI system is effective and efficient in 

reconstructing meaningful functional brain networks from rsfMRI data. 

 



 

Fig.5. The identified group-wise consistent 10 RSN networks from 5 randomly selected datasets (Baltimore, Beijing, 

Berlin, Cambridge and Cleveland) in 1000 Functional Connectomes Project by HELPNI. Each row represents the 

networks from one dataset; the last row shows the RSN templates for comparison. Only the most informative slice, 

which has been overlaid on the MNI152 template, is shown here. 

 



 

Fig.6. The identified 10 RSN networks of individual subject from 5 datasets (Baltimore, Beijing, Berlin, 

Cambridge and Cleveland) in 1000 Functional Connectomes Project by HELPNI. For each dataset, the 10 

RSN networks from one randomly selected subject are shown here. 

 
Table 2. Spatial overlap between identified group-wise RSNs and templates in different datasets 

 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

Baltimore 0.88 0.94 0.82 0.74 0.75 0.78 0.65 0.61 0.67 0.71 

Beijing 0.95 0.98 0.95 0.82 0.86 0.94 0.85 0.58 0.66 0.82 

Berlin 0.81 0.95 0.86 0.80 0.72 0.77 0.71 0.60 0.73 0.82 

Cambridge 0.86 0.98 0.92 0.76 0.93 0.79 0.80 0.56 0.69 0.78 

Cleveland 0.82 0.89 0.80 0.77 0.72 0.75 0.72 0.58 0.53 0.75 

 

Table 3. Spatial overlap between identified individual RSNs and templates in different datasets 

 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

Baltimore 0.34±0.09 0.28±0.09 0.29±0.09 0.33±0.05 0.23±0.05 0.30±0.07 0.21±0.06 0.24±0.05 0.21±0.05 0.23±0.06 

Beijing 0.36±0.09 0.29±0.12 0.32±0.12 0.37±0.08 0.28±0.09 0.41±0.10 0.25±0.07 0.27±0.08 0.24±0.06 0.26±0.06 

Berlin 0.32±0.06 0.29±0.09 0.24±0.10 0.33±0.06 0.23±0.07 0.36±0.09 0.25±0.06 0.26±0.05 0.27±0.08 0.26±0.05 


