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Abstract. Understanding the organizational architecture of human brain function and its alteration patterns in 

diseased brains such as Autism Spectrum Disorder (ASD) patients are of great interests. In-vivo Functional 

Magnetic Resonance Imaging (fMRI) offers a unique window to investigate the mechanism of brain function 

and to identify functional network components of the human brain. Previously, we have shown that multiple 

concurrent functional networks can be derived from fMRI signals using whole-brain sparse representation. Yet 

it is still an open question to derive group-wise consistent networks featured in ASD patients and controls. Here 

we proposed an effective volumetric network descriptor, named connectivity map, to compactly describe spatial 

patterns of brain network maps and implemented a fast framework in Apache Spark environment that can ef-

fectively identify group-wise consistent networks in big fMRI dataset. Our experiment results identified 144 

group-wisely common Intrinsic connectivity networks (ICNs) shared between ASD patients and healthy control 

subjects, where some ICNs are substantially different between the two groups. Moreover, further analysis on 

the functional connectivity and spatial overlap between these 144 common ICNs reveals connectomics signa-

tures characterizing ASD patients and controls. In particular, the computing time of our Spark-enabled func-

tional connectomics framework is significantly reduced from 240 hours (C++ code, single core) to 20 hours, 

exhibiting a great potential to handle fMRI big data in the future.  
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1 Introduction 

Seven decades after initially discovered and reported by Kanner [Kanner, 1943] in the United States and 

Asperger [Asperger, 1944] in Austria, Autism Spectrum Disorder (ASD) has drawn enormous attention from 

society and the research community due to the large number of affected children and the complicated pathology 

of the disease. ASD generally develops at an early age. Children diagnosed with ASD usually have difficulty in 

social interaction and communication, as well as repetitive patterns of behavior, interests, or activities. Accord-

ing to a recent report, ASD affects 1 out of 68 children aged 8 years in the United States [Anon, 2014].  

While years of research have shown ASD to be a highly genetic disorder, an understanding of the corre-

sponding phenotype, i.e., the organizational architecture of human brain function and its alteration patterns in 

ASD patients’ brains, are of great significance to yield new insights on the causes of the disease and to discover 

potential treatments. In-vivo Functional Magnetic Resonance Imaging (fMRI) offers a unique window to inves-

tigate the mechanism of brain function and to identify functional network components of the human brain 

[Friston, 2009; Heeger and Ress, 2002; Li et al., 2009; Logothetis, 2008]. By analyzing brain activity during 

different tasks using fMRI, the neurology logics of ASD patients’ symptoms can be studied. For instance, atyp-

ical activation patterns in Fusiform Face Area during face recognition tasks suggests functional abnormities 

during face processing; decreased activation in the left Inferior Frontal Gyrus and increased activation in the 

Planum and Temporale regions during language tasks indicates that instead of integrating the meanings of in-

dividual words into a coherent conceptual structure, ASD subjects pay more attention to the meanings of indi-

vidual words [Stigler et al., 2011]. In addition to the abnormal brain activations during tasks, decreased func-

tional connectivity in the default mode network (DMN) were also identified when the brain is in a resting state 

[Kennedy and Courchesne, 2008]. 

Several previous studies involving whole-brain scale ASD related functional connectivities have been re-

ported [Stigler et al., 2011][Kana et al., 2014][Moseley et al., 2015] in the literature, and some studies analyzed 



distributed networks of correlated activities between localized brain regions [Fox and Raichle, 2007][Van Dijk 

et al., 2010] and employed complex network analysis [Bullmore and Sporns, 2009][Rubinov and Sporns, 2010] 

to characterize connectivity networks. However, there still seems to lack a group-wise consistent study across 

whole-brain scale regions on large-scale subjects. Most of the previous ASD fMRI studies focused on individual 

or a relatively small number of brain regions or networks. mounting evidence has shown that the human brain 

functions are realized via the interactions of multiple concurrent neural networks, each of which is spatially 

distributed across specific structural substrates of neuroanatomical areas [Dosenbach et al., 2006; Duncan, 2010; 

Fedorenko et al., 2013; Fox et al., 2005; Pessoa, 2012], The major challenge to elucidating the mechanism of 

how functions are altered in ASD patients across the entire brain lies in the enormous difficulty in determining 

the corresponding brain regions of interest (ROIs) in different brains given the remarkable variability in cortical 

structures and functions across populations [Liu, 2011]. The added complications are the unclear cytoarchitec-

tural boundaries between cortical regions and the dramatic changes in functional brain connectivity due to non-

linear properties of the brain [Zhu et al., 2013], making the correspondence establishment between different 

brains even more challenging. The traditional clustering methods and Independent Component Analysis (ICA) 

[Beckmann and Smith, 2004; McKeown et al., 1998] can well construct anatomically distinct brain networks.  

However, the human brain is a highly connected system, thus there is no biological reason for different 

spatial components to hold independent distribution. A brain area could be involved in multiple functional pro-

cesses and a functional network could recruit various heterogeneous neuroanatomic areas, even in resting states 

[Lv et al., 2015a; Lv et al., 2015b]. 

In our previous studies, we have shown that by using sparse representation (SR) method [Mairal et al., 2010] 

to decode fMRI signals [Lv et al., 2015a; Lv et al., 2015b], the whole brain can be decomposed into multiple 

concurrent functional network components. Specifically, by using this method to analyze data from 68 HCP 

(human connectome project) subjects, 23 task related networks and 9 resting state components were consistently 

identified from 7 different tasks, namely, Holistic Atlases of Functional Networks and Interactions (HAFNI). 

This finding suggests that there exists common concurrent functional components across individuals, and more 

importantly, these functional components can potentially solve the difficulty posed by the brain variability and 

be employed in unveiling the differences in diseased brains [Lv et al., 2015c]. 



To further derive common networks and patient-specific networks requires a relatively large amount of pa-

tients and controls and thereby large amount of fMRI data. Notably, SR method will decompose brain fMRI 

signals into hundreds of over-complete dictionary components. This big data challenge poses difficulties in 

making sensible comparisons among healthy controls and diseased brains and then further deriving group-wise 

consistent networks that are common to patients and controls. In response, we proposed an effective volumetric 

network descriptor, named connectivity map, to compactly and quantitatively describe spatial patterns of brain 

network maps and resort to the power of distributed system and implemented a fast, novel framework in the 

Apache Spark (http://spark.apache.org/) environment that can identify group-wise consistent networks featured 

in ASD patients and controls. The applications of our new methods and systems on the Autism Brain Imaging 

Data Exchange (ABIDE) dataset achieved promising results.  

  

2 Methods 

Figure 1 summarizes the pipeline of our proposed computational framework. First, by using SR method 

[Lv et al., 2015a], the whole-brain fMRI data of each subject was decomposed into multiple componenets 

(section 2.2). Then, the connectivity map was obtained from the spatial map of each network component (section 

2.5). To reduce computational complexity, two similarity measurements of different levels of accuracy were 

employed to characterize how similar two components are. The coarser similarity, measured by similarity 

between connectivity map, is calculated as the preliminary similarity measurement and the pair-wise 

components overlap rate (section 2.3) is used as the final similarity measurement. A sparse similarity matrix 

between all SR components obtained from all subjects was generated using high-speed computing framework 

implemented on Apache Spark (section 2.4). Then spectral clustering was performed on the similarity matrix to 

identify group-wise consistent brain resting-state networks (ICNs) across individuals. For those component 

clusters that can be reproducibly identified in individuals, an ICN template was generated for each of them. 

Then the interactions between those ICNs were further analyzed in individual brain space. Specifically, a two-

sample t-test was performed to identify the inter-network interactions that are significantly different between 

ASD patients and healthy controls as connectomics signatures. In addition, a support vector machine (SVM) 

classifier was trained to differentiate ASD patients from controls based on the connectomics signatures. To 

http://spark.apache.org/


better understand the details of the networks that show differences between controls and paitents, another round 

of spectral clustering was carried out on the interactions of ICNs. 

 

Figure 1. Flow chart of the proposed computational pipeline. 

 

2.1 Experimental Data and Preprocessing 

Our experimental data was downloaded from the publicly available Autism Brain Imaging Data Exchange 

(ABIDE) which provides previously collected resting state functional magnetic resonance imaging (rsfMRI) 

datasets from individuals with ASD and healthy controls (http://fcon_1000.projects.nitrc.org/indi/abide/). In 

this study, the rsfMRI data obtained from 77 ASD patient individuals and 101 healthy controls from NYU 

Langone Medical Center were used to develop and test our computational framework. The acquisition parame-

ters were as follows: 240mm FOV, 33 slices, TR=2s, TE=15ms, flip angle = 90°, scan time = 6mins, voxel size 

= 3 × 3 × 4 mm. 

Data preprocessing based on FSL [Jenkinson et al., 2012] was similar to that in [Lv et al., 2015a], which 

includes skull removal, motion correction (MCFLIRT command in FSL tools was adopted, where 4mm (voxel 

level) motion parameter search were conducted to remove micro head-motions [Jenkinson et al., 2002]. Also 



note that dissociation results between DMN subnetworks were demonstrated very similar with and without mo-

tion scrubbing [Starck et al., 2013].), spatial smoothing, temporal pre-whitening, slice time correction, global 

drift removal, and linear registration to the MNI space. All of these steps are implemented by FSL FEAT and 

FLIRT.  Then the fMRI data was decomposed into different functional networks using sparse representation 

(SR) [Lv et al., 2015a] introduced later. 

 

2.2 Sparse Representation of Whole-brain fMRI data 

Sparse representation is a useful machine learning method that can faithfully reconstruct the signal and 

achieve a compact representation of signals. Based on sparse representation, the whole-brain fMRI signals of 

each individual could be decomposed into multiple network components as proposed in [Lv et al., 2015a]. The 

whole process is illustrated in Figure 2. First, the BOLD signal in each voxel of fMRI data was normalized. 

Then the normalized signals in the whole brain were extracted from fMRI data to form a matrix ntX   

with n columns containing normalized BOLD signals from n foreground voxels. By applying the online dic-

tionary learning and sparse coding method [Mairal et al., 2010], each column in X  was modeled as a linear 

combination of atoms of a learned basis dictionary D  such that   DX , where mtD   is a dictionary 

matrix, nm  is a sparse coefficient matrix, and   is the error term. Finally, each row in the α matrix was 

mapped back to the brain volume as a network component for future analysis. In [Lv et al., 2013], the authors 

have shown that the meaningful networks decomposed do not change significantly with the alteration of dic-

tionary size. Considering the size of fMRI data matrix and the number of signals, dictionary size was empirically 

set to 200 and sparsity constraint lambda was set to 0.15 for this study. 



 

Figure 2. Illustration of network components generated by sparse representation.  

 

2.3 Brain Network Similarity Based on Overlap Rate 

To identify group-wise common brain networks, it is essential to first define a quantitative measurement of 

the similarity between brain networks. Since all the subjects have been pre-registered to the MNI space, it is 

intuitive to use the overlap rate between spatial maps of brain networks as a similarity metric. Specifically, we 

performed voxel-wise comparisons and define overlap rate similarity (ORS) as the summation of the minimum 

value in each voxel between two components over the summation of the averaged value in each voxel as the 

following: 
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where kiv ,  is the value in the kth voxel of a brain network component iV . The larger the overlap rate is, the 

more similar two components are (Figure 4). The major advantage of this measurement is that it takes into 

consideration each of the foreground voxels of both components and thereby offers an accurate estimation of 

the similarity. The drawback, traded with the high accuracy, is the computational complexity. Since there are a 

total of 35,600 components from 178 subjects and each component has a feature length of over 100,000 (i.e., 

the number of foreground voxels in a brain image), pairwise similarity is both very time-consuming and 



memory-expensive to compute. Two solutions were proposed and explored here. One is to perform feature 

dimension reduction without compromising too much on accuracy. The other approach is to employ the power 

of data-intensive computing platform of Apache Spark. Both strategies will be detailed in the following sections. 

2.4 Apache Spark Implementation for Speed-up Calculation 

Building pair-wise correlation matrices requires a polynomial time algorithm with a time complexity of 

O(n2), where n is the total number of components (35,600 in this study). Even if there is enough memory to 

load the volumes of all the components, it will take approximately 1280 hours by using single core to compute 

pair-wise ORS (C++ implementation). 

To efficiently manage memory and to employ the power of parallel/distributed computing, the whole com-

putation was implemented on Apache Spark (https://spark.apache.org). Apache Spark is an open-source cluster 

computing framework originally developed in the AMPLab at the University of California Berkeley, which 

provides a fast and general engine for big data processing. The key steps to deploy Spark in this task include 

loading each volumetric component as a Resilient Distributed Dataset (RDD), which is the basic distributed 

memory abstraction in Spark and re-organizing the data to perform pairwise comparison using Cartesian prod-

ucts. The output of the processing is a sparse similarity matrix. 

Notably, Apache Spark takes care of job scheduling and resource allocation among multiple clusters and 

cores. It is a very powerful tool for complex, multi-step data pipelines development. Another useful feature is 

that Spark not only performs in-memory computing, but also allows data exchange between memory chips and 

hard drives with optimized speed when the memory is not sufficient to store the big data. Due to these properties, 

Spark is ideal in solving our big data problem of calculating similarity matrices among all of the SR components. 

With Spark, the original 1280 hours’ computation on one core can be significantly shortened to roughly 100 

hours running on our 16-core server. 

2.5 Brain Network Similarity Based on Connectivity Map 

To further reduce the computational complexity, dimensionality reduction techniques were exploited. Here 

we proposed a compact volume shape descriptor named connectivity map. The basic idea of the connectivity 

map is to unfold the spatial pattern of volumetric voxels by projecting them to points on a unit sphere. Then by 

sampling the distribution of points on the sphere, a 1-dimensional numerical vector can be obtained to describe 



the distribution pattern of the spatial map. The idea was inspired by the shape descriptor of streamline bundles 

[Chen et al., 2013b; Zhu et al., 2012]. But the novelty here is that it is customized for brain network description 

in the 3D volumetric space. The procedure of projection is illustrated in 2D space as shown in Figure 3(a)-(b). 

An example of a 3D volume and obtained connectivity map is shown in Figure 3(d)-(f). The mapping procedure 

from a network map to a connectivity map is listed as follows. 

1. Select a projection center v0 in the 3D space (red point in Figure 3 (a) and Figure 3 (d));   

2. Calculate the vectors from the projection center to each foreground voxel in the network map (red arrows in 

Figure 3 (a)-(b)) and normalize them such that each vector can be represented by a point on unit sphere (blue 

arrows in Figure 3 (b)) and its intensity recorded accordingly:  

}|,|/)(|),{( 00 VkvvvvuuiW kkkkk   (2) 

where V is the set of a brain network’s foreground (non-zero value) voxels; W is the set of projected points; 

vk and v0 are the coordinates of voxels and projection centers; ik is the voxel intensity (the weighted coefficient 

in the sparse representation). 

3. The probabilistic distribution density of P on the unit sphere is applied to describe the connection map of the 

voxel data. Specifically, the sphere is segmented into 48 equally sized regions [Chen et al., 2013b]. Then, the 

intensities of projected points in each region are accumulated and normalized: 
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where Rj is the area covered by region j,  P  is the connectivity map of a volumetric image. 



 

Figure 3. Illustration of connectivity map for volume image. (a) 2-D spatial map; (b) projection of spatial map 

in (a) to unit circle; (c) 3 selected projection centers represented by red dots; (d) 3-D spatial map of a functional 

network; (e) projection of spatial map in (c) to unit sphere; (f) connectivity map for (c). 

 

Considering the property of the connectivity map as a probability density vector, the intersection between 

connectivity maps of two networks Vi and Vj can be applied as a similarity measurement: 
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By this definition, the similarity value will be between 0 and 1, and a higher similarity value indicates networks 

of higher similarity (Figure 4). 



 

Figure 4. Examples of similarity measurement. Connectivity map similarity (CMS) and overlap rate similarity 

(ORS) between each pair of selected SR components were listed below each subfigure. The similar parts were 

highlighted by red circles and dissimilar parts were highlighted by green arrows. 

 

The description power and the accuracy of connectivity maps largely depend on brain orientation and the 

selection of projection centers. Intuitively, once the brain orientation or the location of projection center 

changes, the connectivity map for the same spatial map may also vary. Thus, to make connectivity maps of 

network spatial maps comparable among individuals, we need to 1) align the brains in the same orientation and 

2) select projection centers at the same location among individuals’ brains. Meanwhile, connectivity map may 

lose description power if the projection center locates inside the network cluster of a brain network. For instance, 

if we select the activation center highlighted by the blue arrow in Figure 3 (d) as the projection center, the 

projected points will be evenly distributed on the unit sphere and thus it will be hard to tell the pattern of network 

spatial map with a connectivity map. Another limitation of the connectivity map is that it cannot identify two 

different networks when they locate in the same orientation from the perspective of projection center. To solve 



these issues, as shown by red dots in Figure 3 (c), we selected 3 projection centers along the corpus callosum 

and generated 3 connectivity maps for each network map analyzed. The final connectivity map similarity (CMS) 

is defined as the average similarity between 3 pairs of connectivity map. Our rational is that: 1) by selecting 

projection centers in white matter regions, the situation that it locates inside network clusters could be elimi-

nated; 2) by applying multiple projection centers to observe each network spatial map from different views, it 

could be ensured that different network maps will result in different connectivity maps; 3) by selecting projec-

tion centers from consistent and identical anatomical structures in the brain, the errors caused by individual 

variability can be reduced and the connectivity map’s accuracy in comparing brain networks across individuals 

can be improved. 

Our testing results showed that CMS performs quite well in identifying dissimilar SR components (Figure 

4(a)). Yet its performance in discerning similar SR components is less robust. In several cases, dissimilar com-

ponents may also receive a high CMS (Figure 4(b)-(c)). Nevertheless, given its precise and fast ability in iden-

tifying dissimilar SR components, CMS can be employed initially to quickly filter out evidently dissimilar SR 

components with high confidence. Later, similarities between the remaining components are measured by the 

more accurate ORS. Intuitively, by increasing CMS threshold, the amount of similarities to be calculated using 

ORS will be significantly reduced, while the chance of ignoring similar components will be increased. Thus in 

our computation, a relatively conservative CMS threshold (0.5) was chosen to minimize accuracy trade off 

during computational speedup. And only when ORS is larger than 0.2, the two components will be considered 

as similar and the ORS between them will be recorded. After integrating CMS measurement into our computa-

tional framework, further speedup was achieved and the whole computation only took 64 hours to finish by 

using 16 cores on a single server. 

3 Result 

3.1 Resting-state Networks in Autism and Healthy Control 

By using the method proposed, 35,600 SR components were obtained from the rsfMRI data of 77 ASD 

patients and 101 healthy controls. The inter components similarity matrix was then calculated. We performed 

clustering on the obtained similarity matrix to cluster similar SR components. First, before clustering, the com-



ponents with weak connections (low similarity to other components) were eliminated – if the degree of a com-

ponent is less than 5 after binarizing the connectivity with 0.25 threshold, the component will be eliminated 

before clustering. Then, spectral clustering [Chen et al., 2013a; Luxburg, 2007] was performed to iteratively bi-

partition the component clusters. Specifically, normalized cut [Chen et al., 2013a; Luxburg, 2007] was applied 

as the stopping criteria of bi-partition – bi-partition will stop if the corresponding normalized cut value is larger 

than 0.7. 199 initial clusters (http://hafni.cs.uga.edu/autism/init) were obtained after clustering. Based on our 

visual inspection, all the clusters obtained were meaningful – similar components were clustered together and 

clusters were discriminative to each other. Intriguingly, all initial clusters obtained contain SR components from 

both ASD patients and healthy controls. No clusters are ASD specific or healthy specific. 

For each initial cluster, a network template was derived by averaging all the SR components within this 

cluster. Then we searched the correspondence of each network in the SR components of each individual’s brain 

– the component with the maximum ORS to the templates was taken as its correspondence. Notably, if the ORS 

between a template and its correspondence is smaller than 0.2 in more than 50% ASD subjects and 50% healthy 

controls, the network was taken as irreproducible and was eliminated for further analysis. Besides, the motion-

induced artifact ICN templates are further removed from analysis. In total, 144 networks remain and form the 

group-wise common ICNs in our used dataset. For the convenience of further discussion and easy visualization, 

all of these ICNs were sorted by their reproducibility and each ICN is given an index (http://hafni.cs.uga.edu/au-

tism/templates/all.html). 

For each common ICN, we then performed one-tailed t-test to compare the ORSs between ASD patients and 

healthy controls. 4 ICNs with significantly higher (p-value: 0.025) ORS in ASD patients were identified (Figure 

6). 12 ICNs with significantly higher (p-value: 0.025) ORS in healthy controls were also identified (Figure 7). 

Multiple comparison test corrections by applying False Discovery Rate (FDR) Control for p-value are per-

formed later to obtain FDR corrected p-value (pFDR-value). And significant results that still remained are 

shown inside the red boxes in Figure 6 and Figure 7.  Furthermore, for the template 12 with the t-test p-value 

indicates significant difference among two populations, and it appears to be a white matter component or artifact 

component without physiological meaning. Since the functional disorders in autism patients are not fully un-

derstood, this kind of finding can still be addressed for further discussion.  



For the rest of 128 ICNs, they were commonly distributed in both populations (8 of which are shown in 

Figure 5 ). An increased/decreased ORS reflects increased/decreased connections within each ICN. A decreased 

ORS in DMN (network 7, Figure 8(a)-(b)) agrees with the previous findings that the connection within DMN 

decreases in ASD patients in comparison with the healthy controls during resting state [Assaf et al., 2010; 

Kennedy and Courchesne, 2008]. In addition, we identified increased connections within Right Frontal Pole 

(FP) (network 137); Left FP (network 123); Middle Temporal Gyrus (MTG) (network 133); and Precuneous 

Cortex (PC) (network 45). The functional networks with decreased connections (decreased ORS) we identified 

includes Occipital Fusiform Gyrus (OFG) / Inferior Lateral Occipital Cortex (ILOC) (network 144, 57, 69); 

Anterior Cingulate Gyrus (ACG) / Insular (network 30); Right Superior Lateral Occipital Cortex (SLOC) / Right 

Middle Frontal Gyrus (MFG) (network 38); PC / FP / Frontal Medial Cortex (FMC) / ACG / Posterior Cingulate 

Gyrus (PCG) (network 3); FP / Superior Frontal Gyrus (SFG) / PC (network 20); Caudate / Putamen / Thalamus 

(network 32); Right MFG / Right SFG / Right SLOC (network 58). Intriguingly, we also identified decreased 

functional connections within Cerebral Crus (network 55) and Lateral Ventricle (network 12). We will discuss 

these findings later.  



 

Figure 5.  8 of 128 common ICNs consistently identified in both autism patients and healthy controls.  

 

Figure 6. Templates of ICNs with significantly higher (p-value: 0.025) ORS in ASD patients. All the networks 

were sorted by ascending p-values. No template of ICNs with significantly higher (pFDR-value) ORS in con-

trols has left after multiple comparison correction. 



 

 
Figure 7. Templates of ICNs with significantly higher (p-value: 0.025) ORS in healthy controls. All the net-

works were sorted by p-values. Templates of ICNs with significantly higher (pFDR-value) ORS in patients after 

multiple comparison correction are listed inside the red box. 

 

3.2 Between Network Interactions 

In order to further investigate the differences between autism patients and healthy controls, we computed the 

interactions between all 144 ICNs in each individual’s brain. First, time series were extracted from the dictionary 

atoms as introduced in section 2.2. The temporal interactions between each pair of networks are measured using 



the Pearson correlations of the extracted time series. And the spatial interaction is measured by the ORS between 

corresponding components. Then based on two-sample t-test with 1000 permutations, the interactions that are 

significantly different (p-value: 0.05) between ASD patients and healthy controls were selected as connectomics 

signatures. Based on these connectomics signatures, SVM classification was performed and tested in 10 folds 

cross validation manner. On average, we achieved 93.8% accuracy, 91.1% sensitivity, and 95.3% precision in 

differentiating ASD subjects from the healthy controls, which is quite promising and encouraging. 

One-tailed t-test was performed to identify the interactions that are significantly increased or decreased in 

ASD patients. The findings in both types of interactions were largely consistent with each other (Figure 9). 

There is no conflict finding between temporal interactions and spatial interactions – if one interaction signifi-

cantly increased, the other either significantly increased or had no significant differences between ASD patients 

and healthy controls. All the interactions significantly changed were listed in Figure 9(c) together with the 

differences in average temporal interactions (Figure 9(a)) and average spatial interactions (Figure 9(b)). Though 

all of the 144 functional networks can be identified in both populations and most of them have common distri-

butions across subjects, significant alternations in the inter-network interactions were identified among most of 

the ICNs (Figure 9). For instance, the temporal interactions of DMN (network 7) (Figure 8(a)) significantly 

decreased (p-value: 0.025) with network 3 (PC / FP / FMC / ACG / PCG), 15 (Lingual Gyrus (LG) / PC / 

Intracalcarine Cortex (IC)), and 50 (FMC / Right Frontal Orbital Cortex (FOC)) (Figure 8(c)). While its inter-

action significantly increased (p-value: 0.025) with network 39 (LG / OFG), 76 (Left Angular Gyrus (AG) / 

Left SLOC / Left FP / Left MFG / Left SFG), 79 (Cerebral Crus / OFG), 84 (Right Posterior Supramarginal 

Gyrus (PSG) / Right AG / Right FP), 111 (Right MTG / Right AG / Right Supramarginal Gyrus (SG)), 129 

(Right Inferior Frontal Gyrus (IFG) / Right FP / FOC) in ASD subjects (Figure 8(d)). Intriguingly, increasing 

interactions between DMN and multiple language-related ICNs were identified. This may relate to the impair-

ment in social interactions and communication of ASD subjects and will be further discussed. 

Based on the results of one-tailed t-test, we further performed clustering to cluster brain ICNs with strong 

interaction increase or decrease. Specifically, two affinity matrices (increased/decreased) were generated such 

that if both temporal and spatial interactions are significantly increased or decreased, the corresponding con-

nectivity is defined as 1; and if only one type of interaction significantly increased or decreased, the connectivity 

was defined as 0.5, otherwise the connectivity was 0. For each affinity matrix, we first eliminated the ICNs with 



weak interactions, and then performed spectral clustering to cluster ICNs with strong interactions. 14 network 

clusters were finally obtained for both increased interactions and decreased interactions, and for convenience, 

they are referred as increased/decreased network interaction clusters (INICs/DNICs) (Figure 9). Intriguingly, 

we also found a considerable amount of decreased interactions within INICs as well as increased interactions 

within DNICs (highlighted by black arrows in Figure 9). For interactions within INIC, 27.9% of within cluster 

network interactions increased while 3.9% decreased. And for interactions within DNIC, 28.4% of within clus-

ter network interactions decreased while 1.7% increased. The complicated changes in functional network inter-

actions might be related to the network alterations and functional compensation. 

 



Figure 8. (a) Spatial map of network 7. (b) ORS between the template of network 7 and the corresponding SR 

components in each individual’s brain. (c) ICNs with decreased temporal interactions to network 7. (d) ICNs 

with increased temporal interactions to network 7. 

 

Figure 9. Group-wise comparisons of inter-network interactions. (a) Differences in average temporal interac-

tions between ASD patients and healthy controls (TCs). (b) Differences in average spatial interactions between 

ASD patients and TCs. (c) Significantly increased or decreased interactions identified by one-tailed t-test (p-

value: 0.025). Color bars were listed at the bottom of subfigures. The matrices in the second and third rows were 



arranged by clusters. In each subfigure, starting from top left, the 1st magenta box is the ICNs with weak con-

nections. Following it, the rest of the boxes are clusters from #1 to #14 respectively. 

3.3 Method Reproducibility 

In order to demonstrate the reproducibility of our method, 152 group-wisely consistent ICNs were obtained 

by applying the proposed method with the same parameters to rsfMRI datasets from 9 different sites (KKI, 

NYU, Olin, SBL, Stanford, UCLA, UM, USM, and Yale) on the ABIDE websites. All the 144 ICNs obtained 

from the NYU site are reproducible in the newly-obtained 152 ICNs from 9 sites, which means that each ICN 

out of 144 ICNs has a correspondent ICN from the 152 ICNs with a ORS larger than 0.2. Figure 10 shows the 

ORS values between the 144 templates and the corresponding templates in the newly-obtained 152 templates, 

which demonstrated the correspondence between the 144 templates and the newly obtained 152 templates and 

thus further validated the reasonable reproducibility of our proposed methods. The method reproducibility 

webpage in our data portal (http://hafni.cs.uga.edu/autism/templates/method_reproducibility.html) showed the 

reasonably good correspondence between the previous generated 144 templates and the independently repro-

duced 152 templates.  

 

Figure 10. All ORS values of the corresponding templates from the reproduced 152 templates are greater 

than 0.2, demonstrating the proposed method is reasonably reproducible on other sites’ data. 

In addition, the connectomics signatures generated from two-sample t-tests with 1000 permutations on NYU 

training dataset were calculated as features from 9 sites’ datasets for SVM classifier testing for the feature 



reproducibility validation. It turned out that a 70.48% 10-fold cross validation accuracy was achieved on da-

tasets from 9 ABIDE sites. This reasonable accuracy suggests that our connectomics signatures are predictive 

on separate datasets, though the accuracy can be further substantially improved in the future. Meanwhile, except 

for NYU training dataset, 9 other sites’ datasets were used to generate the connectomics signatures using two-

sampled t-tests with 1000 permutations and are then calculated for SVM model training, with a 76.46% 10-fold 

cross validation accuracy was achieved, which demonstrated that the features selected using our proposed 

method can generalize to other datasets other than only the NYU dataset. 

4 Discussion 

In this study, we have identified 144 group-wisely consistent ICNs from the rsfMRI data of 77 ASD subjects 

and 101 healthy controls. To our best knowledge, this is one of the most comprehensive group-wise studies of 

ICNs among ASD studies. Due to the limitations on computational method and analysis power, previous studies 

usually focused on several functional networks or ICNs [Philip et al., 2012; Stigler et al., 2011]. Thanks to the 

novel and powerful large-scale fMRI data mining framework proposed in this study and the availability of big 

rsfMRI dataset, it is surprising that the number of common ICNs in the human brain could be as large as 144 

(http://hafni.cs.uga.edu/autism/templates/all.html), which is significantly larger than the number of networks 

analyzed in the previous studies [van den Heuvel and Hulshoff Pol, 2010; Rosazza and Minati, 2011]. Moreover, 

our further investigations on these 144 common ICNs between ASD patients and healthy controls identified 

interesting patterns that may unveil atypical behaviors in ASD. 

One major fMRI findings among ASD studies is the atypical patterns of Fusiform Gyrus activation during 

face processing in ASD [Stigler et al., 2011]. These findings are directly related to the explanations of abnormal 

social behaviors in ASD. In our analysis, decreased connectivity has also been identified in Fusiform Gyrus 

during resting-state (network 144, 57, 69). These findings not only add support to the existing studies, but also 

suggest that the abnormities in task related functional networks can also be identified during resting-state. 

Since language and communication impairment is one of the major symptoms in ASD domain, abnormity 

in brain activity during language tasks is of great research interest. For instance, decreased left IFG and increased 

Planum Temporale (PT) activations in subjects with ASD have been reported in several studies [Stigler et al., 



2011]. Intriguingly, in our analysis, we found increased interactions between DMN and language related net-

works such as network 84 (PSG / Right AG / Right FP), network 129 (Right IFG), and network 111 (Right 

MTG / Right AG / SG). Further investigations on those networks will improve our understandings of the lan-

guage deficits in ASD. 

In previous works, decreased ACG activation was recorded in ASD patients during response inhibition tasks 

[Kana et al., 2007] and increased rostral ACG activation was reported during correct trials of a response moni-

toring task [Thakkar et al., 2008]. Atypical inhibition network (ACG / Middle Cingulate Gyrus (MCG) / Insular) 

connectivity in ASD has been hypothesized to contribute to the core repetitive behavior observed in ASD. In 

our analysis, the reduced ORS in network 30 (ACG / Insular) agrees with these previous findings that there is 

decreased connectivity within inhibition networks during resting state. 

The reduced ORS in the DMN (network 7) is consistent with previous findings that ASD patients have 

reduced DMN connectivity  [Assaf et al., 2010; Kennedy and Courchesne, 2008]. The DMN is known to be 

active during resting-state and also correlate with self-referential mental representation and theory of mind 

[Buckner et al., 2008]. Growing evidence showed correlations between the core symptom domains of ASD and 

DMN involvement. Our finding further confirmed the role of the DMN in the pathophysiology of ASD.  

Intriguingly, we also found increased connections within the PC (network 45) which is part of the DMN. 

Although the ORS between network 45 and network 7 is relatively high (0.24), two ICNs occur in different part 

of PC. Network 7 covers the ventral part of PC which is adjacent to PCG while network 45 covers the dorsal 

part of PC which is at the top of network 7. It has been shown that the dorsal PC has very different roles in 

comparison with the ventral PC and is involved in spatially guided behavior and mental imagery [Zhang and Li, 

2012]. Together with the dorsal PC, increased connections were identified in the FP (network 137, 123), which 

compels further investigation [Okuda et al., 2003]. All these observations suggest that ASD patients may have 

more imaginary thoughts than normal controls and that these thoughts might be relate to their deficit social 

behavior. 

Given the large number of common ICNs identified in this study and the complicated interactions between 

them, it is not possible to fully investigate the roles of the ICNs in ASD in this paper at current stage. From our 

perspective, more participants and wider collaborations are possible solutions in fully understanding the brain 

functional mechanisms from these 144 common ICNs. To enable explorations and investigations of the results 



generated from the framework, we built a data portal (http://hafni.cs.uga.edu/autism/) for the dataset and the 

obtained ICNs. In the portal, the spatial pattern of the 144 common ICNs and their ontology, together with our 

analysis, are provided for further exploration and interpretation. 

In addition to the novel insights on ASD studies, this work also provides a novel and effective solution for 

big data fMRI studies. Given the computational efficiency of Apache Spark using connectivity map, the method 

can be easily scaled up to analyze and cluster brain networks in big datasets consisting of thousands of subjects 

by its integration with large-scale informatics systems such as HAFNI-Enabled Large-scale Platform for Neu-

roimaging Informatics (HELPNI) [Makkie et al., 2015]. In the future, the researchers can apply our proposed 

framework with connectivity map together with functional brain network decomposition methods such as SR 

[Lv et al., 2015a; Lv et al., 2015b] to analyze such large scale brain functional datasets and identify abnormal 

as well as common functional networks in diseased brains in order to better understand the functional mecha-

nisms of brain diseases. 
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