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Abstract 

A relatively underexplored question in fMRI is whether there are intrinsic differences in terms of 

signal composition patterns that can effectively characterize and differentiate task-based or resting 

state fMRI (tfMRI or rsfMRI) signals. In this paper, we propose a novel two-stage sparse 

representation framework to examine the fundamental difference between tfMRI and rsfMRI signals. 

Specifically, in the first stage, the whole-brain tfMRI or rsfMRI signals of each subject were 

composed into a big data matrix, which was then factorized into a subject-specific dictionary matrix 

and a weight coefficient matrix for sparse representation. In the second stage, all of the dictionary 

matrices from both tfMRI/rsfMRI data across multiple subjects were composed into another big 

data-matrix, which was further sparsely represented by a cross-subjects common dictionary and a 

weight matrix. This framework has been applied on the recently publicly released Human 

Connectome Project (HCP) fMRI data and experimental results revealed that there are distinctive and 

descriptive atoms in the cross-subjects common dictionary that can effectively characterize and 

differentiate tfMRI and rsfMRI signals, achieving 100% classification accuracy. Moreover, our 

methods and results can be meaningfully interpreted, e.g., the well-known default mode network 

(DMN) activities can be recovered from the very noisy, very heterogeneous and large-scale 

aggregated big-data of tfMRI and rsfMRI signals across all subjects in HCP Q1 release. 

 

Keywords: Task-based fMRI, resting-state fMRI, classification, sparse coding, online dictionary 

learning 
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Introduction 

Functional magnetic resonance imaging (fMRI) based on blood-oxygen-level dependent (BOLD) 

techniques has been widely used to study the functional activities and cognitive behaviors of the brain 

based on the induced stimulus by tasks, i.e., task fMRI (tfMRI) (Worsley and Friston, 1995, Worsley 

1997; Linden DE et al., 1999; Heeger and Ress, 2002) or during task-free resting-state, i.e., resting 

state fMRI (rsfMRI) (Raichle et al., 2001; Fox et al., 2007). To infer meaningful neuroscientific 

patterns within fMRI data, various computational/statistical methods have been proposed, including 

the widely-used general linear model (GLM) for tfMRI (Friston et al., 1994; Worsley, 1997), 

independent component analysis (ICA) for rsfMRI (McKeown et al., 1998), as well as many others 

methods including wavelet algorithms (Bullmore et al., 2003; Shimizu et al., 2004), Markov random 

field (MRF) models (Descombes et al., 1998), mixture models (Hartvig et al., 2000), autoregressive 

spatial models (Woolrich et al., 2004), Bayesian approaches (Luo et al., 2007). In these methods, 

GLM is one of the most widely used methods due to its effectiveness, simplicity, robustness and wide 

availability (Friston et al., 1994; Worsley et al., 1997; Lv et al., 2014a; Lv et al., 2014b).  

 

However, a relatively underexplored question in tfMRI and rsfMRI is whether there are intrinsic, 

fundamental differences in signal composition patterns that can effectively characterize and 

differentiate these two types of fMRI signals. As far as we know, there are at least three challenges in 

addressing the above question. Firstly, the variability of fMRI signals across brain scans and across 

individual subjects could be remarkable. Despite the successes of using GLM-based framework in 

analyzing individual brain’s activation patterns (e.g., Worsley and Friston, 1995; Bullmore et al., 1996; 
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Woolrich et al., 2001), it has been challenging to derive consistent fMRI activation patterns across 

different brains and populations due to the huge variability between individuals (Brett et al., 2002; 

Mueller et al., 2013). Many research studies have been done to investigate the individual variability in 

brain imaging, and it has been shown that there are several major sources of variability (which are 

often mixed): 1) the variability in the structure and its corresponding functionality between individual 

brains, as it has been shown that the standardized parcellations of the brain still poses a major 

difficulty in terms of function and microanatomy (Brett et al. 2002); 2) the variability of each 

individual’s response to the external stimulus during tfMRI scan, as well as their variability during 

resting-state which are even more significant. For instance, it has been reported that there is 

significant and substantial variability in the shape of responses collected across subjects and even 

across multiple scans of a single subject (Aguirre et al., 1998; Barch et al., 2013; Steinmetz et al., 

1991); 3) and consequently, the variability in the spatial distribution of the activation patterns obtained 

by GLM and/or functional networks inferred by network analysis could be even larger, as mentioned 

in the literature (McGonigle et al., 2000; Handwerker et al., 2003). 

 

Secondly, the amount of whole-brain, voxel-wise fMRI signals from multiple subjects could be 

immense. For example, high-resolution tfMRI scan from the recently publicly released Human 

Connectome Project (HCP) has around 150,000-200,000 time series signals for one subject during a 

single task/resting-state scan (Barch et al., 2013). In total, for Q1 release of HCP data, there are 

around 10,200,000-13,600,000 time series signals for all 60 subjects of a single task. As this dataset 

includes 7 tasks and 1 resting state scans, the total size will grow to 81 million. The memory capacity 
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on a server/workstation level can barely handle such amount of data. Also, there would be much more 

subjects involved if we aim to conduct a cross-population study. Therefore, eventually we would need 

a scalable computational framework with the capacity of handling the big-data of fMRI signals to any 

available size to obtain meaningful group-wise result.  

 

Thirdly, there are a variety of noise sources in fMRI signals. During fMRI scans, several factors 

including scanner instability, experiment design deficits, and effects of susceptibility of high fields 

may all lead to noises (Stocker et al., 2005; Hu and Norris, 2004). For an individual subject, head 

motion, lack of attention and other factors that are not related to the experiment design could also 

introduce noises (Stocker et al., 2005). There have been various studies focused on fMRI imaging 

quality with enormous techniques developed for the signal de-noising and artifact removal (Simmons 

et al., 1999; Foland and Glover, 2004; Stocker et al., 2005; Friedman and Glover., 2006). However, it 

has been rarely explored if big-data analytics strategies such as dictionary learning and sparse 

representation could potentially effectively deal with such variety of noises from the entire brains of 

multiple subjects.  

 

Inspired by the successes of using sparse representation in pattern recognition (Mairal et al., 2009; 

Kreutz-Delgado et al., 2003; Aharon et al., 2006; Lewicki and Sejnowski 2000) and in brain 

functional imaging analysis (Lee et al., 2011; Li et al., 2012; Yamashita et al., 2008; Li et al., 2009; Lv 

et al., 2014a; Lv et al., 2014b), in this paper, we propose a novel two-stage sparse representation 

framework to obtain a group-wise characterization of fMRI signals obtained during various tasks (or 
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during resting-state), which have the capability of addressing the abovementioned three challenges. 

Specifically, for the first challenge, the proposed framework would put the representative dictionary 

matrix from each individual into the same space established by the common dictionary learned at the 

second stage, thus dealing with the inter-subject variability problem for the analysis without losing 

individual information. For the second challenge, the two-stage framework applies a 

divide-and-conquer scheme by first reducing the data of each individual to its dictionary-based 

representation, and then aggregating the reduced data into a new input to learn the group-wise 

dictionary. Using the HCP Q1 dataset as an example, after the first stage, we would learn 400 

dictionary atoms from 150,000-200,000 signals for each of the 60 subjects (Lv et al., 2014a). Thus, at 

the second stage, the input would be of a much-reduced size (400*60), and we can learn a common 

dictionary of all the subjects at ease, compared with the computational load of decomposing 

10,200,000-13,600,000 signals. For the third challenge, as the sparse representations learned at the 

first stage capture the most prominent temporal activities and their corresponding spatial organization 

patterns of the brain functional signal, the individual dictionaries, which serve as the input of the 

second stage dictionary learning, essentially have been de-noised since in most cases noise signals are 

temporally inhomogeneous and spatially scattering. 

 

The organization of this paper is as follows: in the method section we introduce our two-stage 

dictionary learning framework with a running example. Then the result section provides the accuracy 

of classification on task/resting-state fMRI data, which serves as the main verification of the proposed 

framework. After that we provide the spatial/temporal characterization of three types of the common 
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functional components obtained by the framework, which are the main new findings of our work. 

 

Materials and Methods 

Overview 

The computational flowchart of the proposed framework is summarized in Fig. 1, and a running 

example of the framework applied on the combined dataset of working memory (WM) and 

resting-state (RS) fMRI is illustrated in Fig. 2. In the first stage (Fig. 1(a)) , we apply the dictionary 

learning method on the whole-brain tfMRI and rsfMRI signals from each subject (in both training and 

testing datasets) to learn dictionaries Dt (from tfMRI) and Dr (from rsfMRI) with the corresponding 

loading coefficients αt and αr, and the example results are shown in Fig. 2(b). In this work, each atom 

in the learned dictionary along with its loading coefficient would be termed as “functional 

component”, since it is considered as a functional basis that constitutes the whole brain activities. 

Then the dictionaries Dt and Dr learned at the first stage from half of the entire subjects (i.e., training 

dataset) would be aggregated into one single matrix S* (Fig. 1(b), with an example in Fig. 2(c)), 

which serves as the input for the second-stage dictionary learning to infer a new, group-wise common 

dictionary D* and loading coefficient α* (Fig. 1(c), Fig. 2(d)). Atoms in the common dictionary and 

their estimated spatial maps are then termed as “common functional component”, as they are inferred 

group-wisely and constitute the functional activity variation for all subjects involved. Further, the 

most discriminative atoms in the common dictionary would be selected by analyzing the loading 

coefficients α* as classification features (Fig. 1(f), illustrated in Fig. 2(f)). The selected common 

functional components are then used to train an support vector machine (SVM) for the classification 
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of the dictionaries learned from the half of subjects (i.e. testing dataset) during the classification stage, 

as in Fig. 1(g-h).  

 

 

Figure 1. Overview of the two-stage dictionary learning scheme: (a) First-stage dictionary learning 

routine for each individual subject and for each task type (blue: fMRI data obtained during task, red: 

fMRI data obtained during resting-state). αt
1 denotes the loading coefficients obtained from the tfMRI 

of subject1 etc. (b) Construction of the second-stage dictionary learning input S* and sparse coding 

input S*test. (c) Second-stage dictionary learning performed on S* to obtain D* (common dictionary) 

and α*. (d) Using D* for the sparse coding on S*test, obtaining α*test. (e) Estimation of the spatial 

re-maps of common functional components. (f) Calculating ROA vector by analyzing α*, then 

α*test :(m kp)D* :(t m)α* :(m kp)

1 2 3 …    
 

 

 

 
+1 … p-2 p-1 p

Training Dataset Testing Dataset

ReMap1

ReMap2

ReMap3

…

ReMapm

e

a

SVM for classification

Label of the

testing dataset

 

Ratio of Activation

(ROA) vector :(m 1)

/ Feature Selection

Common Functional

Components
f

αt
1

Dt
1

αr
1

Dr
1

αt
…

Dt
…

αr
...

Dr
…

αt
2

Dt
2

αr
2

Dr
2      

a

αt
…

Dt
…

αr
…

Dr
…

αt
p

Dt
p

αr
p

Dr
p

αt
p-1

Dt
p-1

αr
p-1

Dr
p-1      

a

Dt
1

Dr
1
… S* … Dt

…
Dr

…
…Dt

…
Dr

…
… S*test …Dt

p
Dr

p

b b

c d

h



9 

 

performing classification-based feature selection. (g) Training SVM. (h) Applying SVM on α*test for 

the classification of the testing dataset. 

 

Data acquisition and preprocessing 

The dataset used in this work comes from the Human Connectome Project Q1 release (Barch, Burgess, 

Van Essen DC., et al., 2013; Van Essen DC, et al., 2013). The acquisition parameters of tfMRI data as 

follows: 90×104 matrix, 220mm FOV, 72 slices, TR=0.72s, TE=33.1ms, flip angle = 52°, BW=2290 

Hz/Px, in-plane FOV = 208×180 mm, 2.0mm isotropic voxels. For tfMRI images, the preprocessing 

pipelines included motion correction, spatial smoothing, temporal pre-whitening, slice time correction, 

global drift removal. More detailed data acquisition and preprocessing are referred to (Barch, Burgess, 

Van Essen DC, et al., 2013; Van Essen DC, et al., 2013). rsfMRI data were acquired with the same 

EPI pulse sequence parameters as T-fMRI (Smith et al., 2013). The time length of each task and 

resting state are shown here: resting state (1200 frames), working memory (405 frames), gambling 

(253 frames), motor (284 frames), language (316 frames), social cognition (274 frames), relational 

processing (232 frames), emotion processing (176 frames). As there are 60 subjects in the released 

dataset, in this work half (30) of the subjects were used for training (i.e. common dictionary learning 

and feature set constructing), while data from the other half were used for testing (i.e. classification). 

When used as dictionary learning input, signals on each voxel are normalized to have unit l2-norm for 

both tfMRI and rsfMRI data. 

 

Two-stage dictionary learning 
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First-stage dictionary learning method 

In the first stage, the effective online dictionary learning algorithm (Mairal et al, 2009) is adopted to 

learn a dictionary with sparsity constraint from the whole-brain fMRI signals (with time length t and 

voxel number n) of each subject from both training and testing dataset. The algorithm would learn a 

meaningful and over-complete dictionary D consisting of k atoms (m>t, m<<n) to represent S with the 

corresponding sparse loading coefficient matrix α, as each signal in S is supposed to be represented by 

the most relevant atoms in the learned dictionary. Specifically, for the fMRI signal set 𝐒=

[𝑠1,𝑠 ,…𝑠𝑛]𝜖ℝ
𝑡×𝑛, the loss function for the dictionary learning algorithm to minimize is defined in 

Eq. (1) with a l1 regularization that yields to a sparse constraint to the loading coefficient α, where λ is 

a regularization parameter to trade-off the regression residual and sparsity level: 

min
𝐷𝜖ℝ𝑡×𝑘,𝛼𝜖ℝ𝑘×𝑛 

1

 
||𝐒−𝐷𝛼||𝐹+𝜆||𝛼||1,1  (1)  

To prevent D from arbitrarily large values which leads to trivial solution of the optimization, its 

columns 𝑑1,𝑑 ,……𝑑𝑘 are constrained by Eq. (2). 

𝐶≜{𝐷𝜖ℝ𝑡×𝑘   𝑠.𝑡.   ⩝𝑗=1,…𝑘, 𝑑𝑗
𝑇𝑑𝑗≤1} (2) 

In brief, dictionary learning can be rewritten as a matrix factorization problem for both D and α, and 

we use the effective online dictionary learning methods in (Mairal et al., 2009) to derive the solution 

by iteratively updating D and α in Eq. (1) during the optimization. It should be noted that we employ 

the same assumption as in previous studies (Li et al., 2009; Lee et al., 2011; Li et al., 2012; 

Oikonomou et al., 2012; Lee et al., 2013; Abolghasemi et al., 2013) that the atomic components 

(which are dictionary atoms in D in our work) involved in each voxel’s fMRI signal are a few major 

ones and the neural integration of those components is linear. In this work, the value of λ and 
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dictionary size m were determined experimentally (λ=0.1, k=400) (Lv et al., 2014a; Lv et al., 2014b). 

After the dictionary learning, the resulting D matrix contains the temporal variation of each atomic 

basis component of the functional brain, while the corresponding sparse loading coefficient matrix α 

contains the spatial distribution of each component, both illustrated in Fig. 2(b). Based on the 

dictionary learning results of each individual brain, our next major task is to obtain a group-wise 

characterization that could reveal the distinctive organization patterns between the brains’ fMRI data 

under different conditions. 

 

Second-stage dictionary learning and common functional components re-mapping 

In this stage, all the learned dictionaries from tfMRI and rsfMRI are aggregated together to form a 

multi-subject, multi-type matrix S* of dimension t×(2kp), where p is the number of subjects in the 

dataset in Fig. 2(c). Note that in HCP dataset, rsfMRI data has a longer temporal length than tfMRI 

data for all tasks and so does the learned dictionaries. Thus we truncated the learned Dr to make them 

have the same length with Dt, thus enabling the aggregation of the dictionaries from different task 

types. S* would then be used as the input for the second-stage dictionary learning analysis based on 

the same method as introduced previously (λ=0.1, m=50), aiming at obtaining a group-wise common 

dictionary D* and the corresponding loading coefficients α*. Compared with the original fMRI data 

which are defined on the whole brain voxels of each subject, our proposed two-stage framework 

achieves a huge size reduction while still maintaining the major functional characterization for each 

individual. More importantly, noises and undesired voxel-wise signal fluctuations are largely removed 

in S*, thus we can ensure that most of the common functional components can represent the 
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group-wise consistent functional activities, and their differences are from the intrinsic features of 

functional brain activity patterns. As the common dictionaries are defined on the group-wise 

aggregated dictionaries, it is then important to estimate their spatial maps over the brain (i.e. spatial 

re-mapping). In this work, the re-mapping is achieved by first aligning all the brains into the same 

template using linear registration, thus transforming each α into α’. Then the spatial map of i-th 

common functional component (ReMapi) is obtained by: 

𝑅𝑒𝑀𝑎𝑝𝑖=∑ ∑ 𝛼𝑥,𝑦
′

𝑚

𝑦

∙𝛼𝑖,(𝑥−1)𝑚+𝑦
∗

𝑘

𝑥

 (3)  

where α’
x,y is the loading coefficient matrix of the y-th dictionary (over the total of m) of the x-th 

subject (over the total of k) obtained from the first stage dictionary learning registered to the template, 

and α*
i,xm+y is the loading coefficient value of the y-th dictionary of the x-th subject for the i-th 

common dictionary from the second stage dictionary learning. In other words, the spatial maps of the 

common components are the weighted average from each individual component of each subject, and 

the spatial mapping results are shown in Fig 2(e).  
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Figure 2. A running example illustrating the two-stage dictionary learning framework using WM/rs 

fMRI dataset: (a) fMRI signals from WM (in blue) and resting-state (in red), from a total of 30 

subjects; (b) Dictionaries (upper time series plot) and loading coefficients (lower spatial maps) 

obtained from the first stage dictionary learning. Each type of data from each subject would obtain 

400 dictionaries and corresponding loading coefficients; (c) Aggregation of all learned dictionaries; (d) 

Common dictionaries (left) and their loading coefficients (right) obtained from the second stage 
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dictionary learning, over a total number of 50; (e) Spatial maps of the common functional components 

estimated using Eq. (3); (f) Color-coded ROA vector of common functional components, the selected 

components are highlighted by yellow circles. 

 

Feature selection on common functional components 

As discussed above, the common dictionaries D* and their corresponding loading coefficients α* 

obtained at the second-stage dictionary learning capture the group-wise characteristics of both types 

of the input fMRI data. Further, the row vectors in the loading coefficients α* indicate the weight of 

the corresponding common dictionary’s activation in each atom in S*. An example α* matrix obtained 

from the WM/resting-state fMRI datasets is visualized in Fig. 2(d). The [i, j]-th cell in α* indicates 

how the i-th common dictionary is activated in the j-th atom in S*. As the composition of S* is known 

in the training dataset (the pattern is illustrated in Fig. 1(b): dictionaries from tfMRI and rsfMRI are 

put into S* in turn), for the i-th common dictionary we can obtain its Ratio of Activation (ROA) by: 

ROA𝑖=𝑙𝑜𝑔
|𝛼(𝑖,𝑗)|0

,𝑗𝑡ℎ 𝑐𝑜𝑙𝑢𝑚𝑛 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑡𝑓𝑀𝑅𝐼

|𝛼(𝑖,𝑗)|0
,𝑗𝑡ℎ 𝑐𝑜𝑙𝑢𝑚𝑛 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑟𝑠𝑓𝑀𝑅𝐼

 (4) 

Thus the ratio is obtained by counting the number of non-zero entries of the row vector in S* which 

have been labeled as tfMRI or rsfMRI. A sample ROA vector for all 50 common components is 

visualized in Fig. 2(f) and color-coded by the ratio value, where a higher ratio (e.g. “4.0” in red) 

indicates the specific common dictionary is e (4.0)=52 times more involved in tfMRI than in rsfMRI, 

while a lower value (green) indicates the opposite. ROA value approaching 1 (white) indicates that the 

specific component is nearly equally activated in both tfMRI and rsfMRI. Based on the ROA vector, 
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we can then select the components that are specific to either tfMRI or rsfMRI by a high absolute value 

of ROA (i.e., on the two ends of the ROA vector).  

 

In order to quantitatively define the exact set of the common functional components reflecting the 

underlying data composition, we design a data-driven algorithm based on the premise that the loading 

coefficient of the selected components shall have the maximum capacity in classifying the data. To 

test this premise, the algorithm would split α* into two halves consisting of equal number of subjects 

(i.e., columns). Then we would use only one row from the first half of α* which corresponds to the 

highest ROA value to train a Support Vector Machine (SVM) based on the LIBSVM toolbox 

(Chih-CC et al., 2011), establishing the relationship between the composition of common components 

(i.e., loading coefficients) and the composition of raw data (i.e., task/rs labels). Then we would use the 

trained SVM to classify the same rows of the second half of α*. After storing the classification 

accuracy, which is defined by the proportion of columns in α* that has been classified into the correct 

label, we would iteratively employ more rows in α* sorted by their absolute ROA values as the feature 

inputs, thus selecting more features for the SVM training and classification. In this way, the feature set 

(i.e., selected common functional components) could be determined by minimizing the classification 

error. 

 

Sparse coding of the testing dataset and classification 

For the purpose of verification of the proposed framework, we performed the classification analysis 

on the testing dataset which constitutes half of the total subjects. Before analyzing the testing dataset, 
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the loading coefficients of the previously selected common functional components in the training 

dataset would be used to train an SVM in a similar way as in Feature selection on common functional 

components part. Note that the same first-stage dictionary learning has been performed on the testing 

dataset as shown in the right panel in Fig. 1(a). We could aggregate the individually-learned 

dictionaries from the testing dataset into S*testing, similar to the formation of S* in Second-stage 

dictionary learning and common functional components re-mapping part. Then the common 

dictionary D* obtained from the training dataset would be used to sparsely code S*testing by solving a 

typical l-1 regularized LASSO problem (Fig. 1(d)) to obtain its corresponding loading coefficients 

αtesting: 

ℓ(𝛼𝑡𝑒𝑠𝑡𝑖𝑛𝑔)≜ 𝑚𝑖𝑛
𝛼𝑡𝑒𝑠𝑡𝑖𝑛𝑔𝜖ℝ𝑚×𝑛

1

2
||𝐒𝑡𝑒𝑠𝑡𝑖𝑛𝑔−𝐷∗𝛼𝑡𝑒𝑠𝑡𝑖𝑛𝑔||𝐹+𝜆||𝛼𝑡𝑒𝑠𝑡𝑖𝑛𝑔||1,1 (5) 

α*testing has the similar implications with α*, and the difference between them is that α* and D* were 

learned simultaneously from the training dataset utilizing an optimization routine, while α*testing is the 

deterministic LASSO solution of projecting D* on a new dataset. As the tfMRI/rsfMRI composition 

pattern in αtesting is unknown, the trained SVM would be used to classify the rows in α*testing that 

correspond to feature selection results to obtain the labels of the columns in α*testing. Thus the link 

between training and testing dataset is established by the fact that both of their individual dictionaries 

learned during the first stage are sparsely coded by the same common dictionary D*, making the rows 

in α* and α*testing corresponding to the same common functional components. After obtaining the 

classification result of the labels of the m number of functional components in each fMRI dataset from 

each subject (i.e. component-wise result), our next goal is to classify the type of that dataset (i.e. 

subject-wise result), as the dataset constituted by those m functional components of each subject has 
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only one label. In this work, we used a simple scheme by comparing the number of components 

belonging to either task or resting-state in the given dataset, and then do the classification according to 

the majority voting rule. 

 

Results 

By using the HCP dataset described in Data acquisition and preprocessing part, we combined each of 

the tfMRI data obtained from seven different tasks with one rsfMRI data, forming the seven combined 

datasets including emotion/rsfMRI, gambling/rsfMRI, language/rsfMRI, motor/rsfMRI, social/rsfMRI, 

relational/rsfMRI and working memory/rsfMRI. Then we applied the proposed framework on the 

seven combined datasets. In all the datasets, tfMRI and rsfMRI can be effectively differentiated, and 

the intrinsic spatial/temporal pattern underlying such difference could be characterized by the learned 

common functional components. In this work, we categorized the functional components into three 

types: task-evoked components, high-frequency components, and resting-state components. In most of 

the following sections, we would use the combined working memory (WM) tfMRI/rsfMRI dataset as 

an example to showcase our results, while the results from the other six tasks can be found in the 

supplemental materials.  

 

Classification results on testing dataset and feature selection  

As described in Feature selection on common functional components part, we used classification 

accuracy on half of the training data as the criteria for determining the exact portion of common 
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functional components that would be used for the classification on the testing dataset. The 

component-wise accuracy plot obtained from WM/rs fMRI data using different numbers of classifiers 

is shown in Fig. 3. It can be seen that when the number of features used was small, the classification 

performance is only slightly better than random guess. As more components were used, the accuracy 

increased monotonically and then reached the maximum at 16. As the performance would not change 

much afterwards, we could conclude that the additional components employed did not contribute 

much to the differentiation power, thus totally 16 components were selected as the features for 

classification. 

 

Figure 3. Left: Number of components selected for the classification (x-axis) vs. classification 

accuracy (y-axis). The accuracy values of using only one component (the one with the highest 

absolute ROA value), the optimize number (16), and using all the 50 components are shown in the 

corresponding boxes. Right: ROA values of the 16 selected common functional components. 

 

After the feature selection in each of the eight combined task/rsfMRI datasets, we classified their 

corresponding testing datasets following steps in Sparse coding of the testing dataset and 

classification part, and the subject-wise results are summarized in Table 1. It can be seen that the 

classification accuracies are very high: tfMRI data from all the 30 subjects have been classified 

correctly, rsfMRI data from all the 30 subjects also have been classified correctly. The results 

demonstrate that there exists fundamental differences between the component composition of tfMRI 
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and rsfMRI, while the common functional components (i.e., features for the classification input) 

learned by the proposed model has the capability for uncovering and characterizing such differences 

from the large and noisy group-wise data. 

Table 1. Subject-wise classification accuracies for 7 tasks.   

 

Emotion 

/rsfMRI 

Gambling 

/rsfMRI 

Language 

/rsfMRI 

Motor 

/rsfMRI 

Social 

/rsfMRI 

Relational 

/rsfMRI 

WM 

/rsfMRI 

#Components 24 18 20 21 23 22 16 

tfMRI 100% 100% 100% 100% 100% 100% 100% 

rsfMRI 100% 100% 100% 100% 100% 100% 100% 

 

In table 1, the first row shows the number of common functional components used for the 

classification by feature selection. The second row shows the percentage of tfMRI dataset of all 30 

subjects that has been classified to the correct label. Similarly, the third row shows the percentage of 

rsfMRI dataset classified to the correct label. 

 

Task-evoked common functional components 

The most prominent and intuitive common functional components obtained by our framework is the 

task-evoked type. In working memory task, there is an example component that belongs to this 

category, with very high ROA values of 4.1 and it has been selected for the classification. The spatial 

distributions of this component is very similar to the results from group-wise GLM activation 

detection applied on the tfMRI of WM task from the 30 subjects in training dataset, as shown Fig. 4(a) 
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and (b), spatial overlapping between (a) and (b) are 89.5%. Its time series, plotted in Fig. 4(c), are 

correspondent with the task design contrast curves (correlation value: 0.6653). Further, the frequency 

spectrum of its time series (Fig. 4(d)) is highly concentrated on the task design frequency. Based on 

the spatial, temporal, frequency-domain characteristic and its sole presence in tfMRI, we can be 

assured that our framework could identify task-evoked functional component in the large scale 

combined fMRI data. More results could be found in supplemental materials. 

 

 

Figure 4. Example task-evoked common functional components from WM/RS dataset. First (top) 

panel: volume map of the components; second panel: volume map of the different contrast maps by 

group-wise GLM; third panel: time series of the components (blue), task design contrast curve of WM 

task (yellow); forth (bottom) panel: frequency spectrum of the components (red), frequency spectrum 

of the contrast curve (green).  
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Resting-state domain common functional components 

Opposite to the task-evoked components, there is one resting-domain common functional component 

with the lowest ROA value=-1.1 (i.e., the most frequently activated in rsfMRI) in the WM/RS dataset. 

As visualized in Fig. 5(a), its spatial map largely resembles the widely-reported default mode network 

(DMN) (Raichle et al., 2001). We had also applied the group-wise independent component analysis 

(ICA) on the same dataset and obtained similar pattern, as shown in Fig. 5(b). It should be noted that 

as no low-pass filtering has been applied in HCP rsfMRI pre-processing, the dominance of lower 

frequency in the component spectrum (Fig. 5(c)) is a valid characterization of the resting-state brain 

functional activation pattern, rather than from the filtering artifact (spatial overlapping rate with ICA 

resting-state map: 83%). More results could be found in supplemental materials. 

 

Figure 5. Resting-state domain common functional component. (a) Volume map of the component. (b) 

Volume map of the group-wise ICA result. (c) Time series of the component. (d) Frequency spectrum 

of the component. 

 

High frequency common functional components 

Besides the two traditional types of common functional components described above, several of the 

identified components from various tasks are immensely activated in tfMRI data yet exhibit diverse 

0.0 0.2 0.4 0.6

0 100 200 300 400

(a) (b) (c)
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spatial/temporal patterns, compared with the common knowledge of brain regions that are responding 

to tasks. One characteristic shared by those components is the dominance of high frequency in their 

spectrum (bottom panel of Fig. 6). It is interesting that components from various datasets have almost 

the same frequency domain characteristics and very similar spatial distribution, even though the task 

design and time length are all different in these datasets. By examining the spatial map of those 

components in Fig. 6, it could be found that in all the three tasks (WM, emotion and gambling) the 

ventral posterior cingulate cortex is consistently activated, which receives inputs from 

thalamus and neocortex, and projects to the entorhinal cortex via cingulum. Being an integral part of 

the limbic system, this area has been reported to be involved with associative learning (Maddock et al., 

2001), memory retrieval (Nielsen et al., 2005), as well as emotion formation and processing 

(Maddock et al., 2003), which explains its significant presence during those tasks. Unlike resting-state 

networks which have been reported to be at presence in different tasks with similar spatial distribution 

(e.g. DMN) (Raichle et al, 2001), the common functional components shown in Fig. 6 only activate 

during their respective tasks but rarely during resting-state, thus largely excluding the possibility that 

these two components belong to the traditional resting-state network. Also, these components could 

not be identified by traditional activation detection method due to the high-frequency nature of their 

temporal pattern (middle panel of Fig. 6), although these components only activated during task and 

highly related to tfMRI data (all with ROA value of infinity). While in our two-stage dictionary 

learning framework such components are very obvious and could be robustly identified. More results 

could be found in supplemental materials. 

 

http://en.wikipedia.org/wiki/Thalamus
http://en.wikipedia.org/wiki/Neocortex
http://en.wikipedia.org/wiki/Entorhinal_cortex
http://en.wikipedia.org/wiki/Cingulum_(anatomy)
http://en.wikipedia.org/wiki/Limbic_system
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Figure 6. High frequency common functional components identified from three datasets: (a) WM/RS, 

(b) Emotion/RS, and (c) Gambling/RS. Top panel: volume map of the component; middle panel: time 

series of the component; Bottom panel: frequency spectrum of the component (red), the frequency 

spectrum of contrast curve is shown in green.  

 

Discussion and Conclusion 

By using the large-scale HCP public tfMRI/rsfMRI datasets, we have presented a novel two-stage 

sparse representation framework to examine the intrinsic differences in tfMRI/rsfMRI signals. The 

major methodological novelty of the two-stage sparse representation is that the framework can 

effectively remove the noises and undesired voxel-wise signal fluctuations, efficiently deal with the 

big-data (a matrix of millions times hundreds data points), and infer distinctive and descriptive 

common dictionary atoms that can well characterize and differentiate tfMRI/rsfMRI signals in task 

performance and resting state. In addition, the results also suggest that our two-stage sparse 

0 100 200 300 400

0.0 0.2 0.4 0.6

(a) (b)

0 70 140 210

0.0 0.2 0.4 0.6
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representation method can effectively recover the DMN activities from the very noisy, very 

heterogeneous and large-scale aggregated big-data of tfMRI and rsfMRI signals across all subjects in 

HCP Q1 release. The applications of this framework on seven HCP tfMRI datasets and one rsfMRI 

dataset have demonstrated promising results. In the future, we plan to better interpret other dictionary 

atoms in two stages and apply this framework to clinical fMRI datasets to elucidate possible 

alterations of functional activities in brain disorders.   
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